RESUMO
A multitude of regulatory genes are involved in phylogenetically conserved developmental cascades required for the patterning, cell-type specification, and differentiation of specific central nervous system (CNS) structures. Here, we describe the distribution of a mouse transcript encoding a homolog of the C. elegans mab-21 gene. In the nematode tail, mab-21 is required for the short-range patterning and cell-fate determination events mediated by egl-5 and mab-18, two homeobox genes homologous to Abd-B and Pax6, respectively. In mouse midgestation embryogenesis, Mab21 is expressed at its highest levels in the rhombencephalon, cerebellum, midbrain, and prospective neural retina. Our data and the genetic interactions previously documented in the nematode suggest that Mab21 may represent a novel, important regulator of mammalian cerebellum and eye development.
Assuntos
Proteínas de Caenorhabditis elegans , Cerebelo/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Mesencéfalo/embriologia , Animais , Animais Recém-Nascidos , Embrião de Mamíferos/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Mesencéfalo/crescimento & desenvolvimento , Camundongos , Retina/embriologia , Retina/metabolismoRESUMO
We report the cloning and genetic characterization of one human and two murine homologs of the mab-21 cell fate specification gene. mab-21 participates in the formation of sensory organs in the male nematode tail, and is essential for other developmental functions elsewhere in the Caenorhabditis elegans embryo. The expanding mab-21 gene family, which is strikingly conserved in evolution, includes two putative Drosophila members. The two mammalian genes, encoding 41 kDa nuclear basic proteins, are expressed in partially overlapping territories in the embryonic brain, eye and limbs, as well as in neural crest derivatives. Recent genetic data implicating mab-21 as a downstream target of TGF-beta signaling, together with the distribution of mab-21 transcripts in the mouse embryo, propose these novel genes as relevant factors in various aspects of vertebrate neural development.