Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Neuropsychopharmacol ; 26(2): 116-124, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36573644

RESUMO

BACKGROUND: Epigenetic modifications like DNA methylation are understood as an intermediary between environmental factors and neurobiology. Cerebral monoamine oxidase A (MAO-A) levels are altered in depression, as are DNA methylation levels within the MAOA gene, particularly in the promoter/exon I/intron I region. An effect of MAOA methylation on peripheral protein expression was shown, but the extent to which methylation affects brain MAO-A levels is not fully understood. METHODS: Here, the influence of MAOA promoter/exon I/intron I region DNA methylation on global MAO-A distribution volume (VT), an index of MAO-A density, was assessed via [11C]harmine positron emission tomography in 22 patients (14 females) suffering from seasonal affective disorder and 30 healthy controls (17 females). RESULTS: No significant influence of MAOA DNA methylation on global MAO-A VT was found, despite correction for health status, sex, season, and MAOA variable number of tandem repeat genotype. However, season affected average methylation in women, with higher levels in spring and summer (Puncorr = .03). We thus did not find evidence for an effect of MAOA DNA methylation on brain MAO-A VT. CONCLUSIONS: In contrast to a previous study demonstrating an effect of methylation of a MAOA promoter region located further 5' on brain MAO-A, MAOA methylation of the region assessed here appears to affect brain protein levels to a limited extent at most. The observed effect of season on methylation levels is in accordance with extensive evidence for seasonal effects within the serotonergic system. CLINICALTRIALS.GOV IDENTIFIER: NCT02582398 (https://clinicaltrials.gov/ct2/show/NCT02582398).


Assuntos
Metilação de DNA , Harmina , Humanos , Feminino , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Radioisótopos de Carbono , Tomografia por Emissão de Pósitrons/métodos
2.
J Psychiatry Neurosci ; 48(5): E369-E375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751919

RESUMO

BACKGROUND: Among its pleiotropic properties, gender-affirming hormone therapy (GHT) affects regional brain volumes. The hypothalamus, which regulates neuroendocrine function and associated emotional and cognitive processes, is an intuitive target for probing GHT effects. We sought to assess changes to hypothalamus and hypothalamic subunit volumes after GHT, thereby honouring the region's anatomical and functional heterogeneity. METHODS: Individuals with gender dysphoria and cisgender controls underwent 2 MRI measurements, with a median interval of 145 days (interquartile range [IQR] 128.25-169.75 d, mean 164.94 d) between the first and second MRI. Transgender women (TW) and transgender men (TM) underwent the first MRI before GHT and the second MRI after approximately 4.5 months of GHT, which comprised estrogen and anti-androgen therapy in TW or testosterone therapy in TM. Hypothalamic volumes were segmented using FreeSurfer, and effects of GHT were tested using repeated-measures analysis of covariance. RESULTS: The final sample included 106 participants: 38 TM, 15 TW, 32 cisgender women (CW) and 21 cisgender men (CM). Our analyses revealed group × time interaction effects for total, left and right hypothalamus volume, and for several subunits (left and right inferior tubular, left superior tubular, right anterior inferior, right anterior superior, all p corr < 0.01). In TW, volumes decreased between the first and second MRI in these regions (all p corr ≤ 0.01), and the change from the first to second MRI in TW differed significantly from that in CM and CW in several subunits (p corr < 0.05). LIMITATIONS: We did not address the influence of transition-related psychological and behavioural changes. CONCLUSION: Our results suggest a subunit-specific effect of GHT on hypothalamus volumes in TW. This finding is in accordance with previous reports of positive and negative effects of androgens and estrogens, respectively, on cerebral volumes.


Assuntos
Emoções , Disforia de Gênero , Masculino , Feminino , Humanos , Disforia de Gênero/diagnóstico por imagem , Disforia de Gênero/tratamento farmacológico , Hipotálamo/diagnóstico por imagem , Testosterona
3.
Cereb Cortex ; 30(3): 1345-1356, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31368487

RESUMO

Univariate analyses of structural neuroimaging data have produced heterogeneous results regarding anatomical sex- and gender-related differences. The current study aimed at delineating and cross-validating brain volumetric surrogates of sex and gender by comparing the structural magnetic resonance imaging data of cis- and transgender subjects using multivariate pattern analysis. Gray matter (GM) tissue maps of 29 transgender men, 23 transgender women, 35 cisgender women, and 34 cisgender men were created using voxel-based morphometry and analyzed using support vector classification. Generalizability of the models was estimated using repeated nested cross-validation. For external validation, significant models were applied to hormone-treated transgender subjects (n = 32) and individuals diagnosed with depression (n = 27). Sex was identified with a balanced accuracy (BAC) of 82.6% (false discovery rate [pFDR] < 0.001) in cisgender, but only with 67.5% (pFDR = 0.04) in transgender participants indicating differences in the neuroanatomical patterns associated with sex in transgender despite the major effect of sex on GM volume irrespective of the self-identification as a woman or man. Gender identity and gender incongruence could not be reliably identified (all pFDR > 0.05). The neuroanatomical signature of sex in cisgender did not interact with depressive features (BAC = 74.7%) but was affected by hormone therapy when applied in transgender women (P < 0.001).


Assuntos
Encéfalo/anatomia & histologia , Identidade de Gênero , Caracteres Sexuais , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Análise Multivariada , Tamanho do Órgão , Pessoas Transgênero , Adulto Jovem
4.
Int J Neuropsychopharmacol ; 23(1): 20-25, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31740958

RESUMO

BACKGROUND: Treatment-resistant depression is among the most debilitating conditions in psychiatry. Recent studies have associated alterations in white matter microstructure measured with magnetic resonance imaging with poor antidepressant response. Therefore, the extent to which electroconvulsive therapy, the most effective therapeutic option for treatment-resistant depression, affects white matter microstructure warrants investigation. METHODS: A total 13 patients suffering from severe unipolar treatment-resistant depression underwent magnetic resonance imaging with a diffusion tensor imaging sequence before and after undergoing a series of right unilateral electroconvulsive therapy. Diffusivity metrics were compared voxel-wise using tract-based spatial statistics and repeated-measures ANOVA. RESULTS: A total 12 patients responded to electroconvulsive therapy and 9 were classified as remitters. An increase in axial diffusivity was observed in the posterior limb of the internal capsule of the right hemisphere (PFWE ≤ .05). The increase in this area was higher in the right compared with the left hemisphere (P < .05). No correlation of this effect with treatment response could be found. CONCLUSIONS: The strong lateralization of effects to the hemisphere of electrical stimulation suggests an effect of electroconvulsive therapy on diffusivity metrics which is dependent of electrode placement. Investigation in controlled studies is necessary to reveal to what extent the effects of electroconvulsive therapy on white matter microstructure are related to clinical outcomes and electrode placement.


Assuntos
Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/terapia , Imagem de Tensor de Difusão , Eletroconvulsoterapia , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Feminino , Humanos , Cápsula Interna/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Br J Psychiatry ; 214(3): 159-167, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30442205

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) is the treatment of choice for severe mental illness including treatment-resistant depression (TRD). Increases in volume of the hippocampus and amygdala following ECT have consistently been reported.AimsTo investigate neuroplastic changes after ECT in specific hippocampal subfields and amygdala nuclei using high-resolution structural magnetic resonance imaging (MRI) (trial registration: clinicaltrials.gov - NCT02379767). METHOD: MRI scans were carried out in 14 patients (11 women, 46.9 years (s.d. = 8.1)) with unipolar TRD twice before and once after a series of right unilateral ECT in a pre-post study design. Volumes of subcortical structures, including subfields of the hippocampus and amygdala, and cortical thickness were extracted using FreeSurfer. The effect of ECT was tested using repeated-measures ANOVA. Correlations of imaging and clinical parameters were explored. RESULTS: Increases in volume of the right hippocampus by 139.4 mm3 (s.d. = 34.9), right amygdala by 82.3 mm3 (s.d. = 43.9) and right putamen by 73.9 mm3 (s.d. = 77.0) were observed. These changes were localised in the basal and lateral nuclei, and the corticoamygdaloid transition area of the amygdala, the hippocampal-amygdaloid transition area and the granule cell and molecular layer of the dentate gyrus. Cortical thickness increased in the temporal, parietal and insular cortices of the right hemisphere. CONCLUSIONS: Following ECT structural changes were observed in hippocampal subfields and amygdala nuclei that are specifically implicated in the pathophysiology of depression and stress-related disorders and retain a high potential for neuroplasticity in adulthood.Declaration of interestS.K. has received grants/research support, consulting fees and/or honoraria within the past 3 years from Angelini, AOP Orphan Pharmaceuticals AG, AstraZeneca, Celegne GmbH, Eli Lilly, Janssen-Cilag Pharma GmbH, KRKA-Pharma, Lundbeck A/S, Neuraxpharm, Pfizer, Pierre Fabre, Schwabe and Servier. R.L. received travel grants and/or conference speaker honoraria from Shire, AstraZeneca, Lundbeck A/S, Dr. Willmar Schwabe GmbH, Orphan Pharmaceuticals AG, Janssen-Cilag Pharma GmbH, and Roche Austria GmbH.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/terapia , Hipocampo/diagnóstico por imagem , Adulto , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Eletroconvulsoterapia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Resultado do Tratamento
7.
Neuropsychobiology ; 74(4): 182-187, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28637048

RESUMO

BACKGROUND: Light therapy (LT) is a non-pharmacological biological treatment that has been used in psychiatry since the 1980s. Previous research has investigated the usage of LT in hospitals. The aim of this study was to examine the pattern of use of LT by office-based physicians. METHODS: A questionnaire was sent by mail to 400 randomly selected doctors in Austria. We made sure that the sample was equally representative of general practitioners (GPs) and psychiatrists, public health service doctors and private doctors, physicians in cities and in the country as well as male and female doctors. Non-responders were asked by phone and e-mail to answer the questionnaire. We achieved a response rate of 27.7%. RESULTS: LT was generally recommended by 67.3% of all physicians (91.6% of the psychiatrists but only 46.6% of the GPs). The recommended location of treatment was patients' homes in 90%. Physicians were asked whether they considered LT to be an appropriate treatment for various disorders. There were affirmative answers from: 94.2% for seasonal affective disorder (SAD), 93.3% for sub-syndromal SAD, 60.6% for non-seasonal recurrent major depressive disorder, 35.6% for jet lag syndrome, 35.6% for chronobiological problems with shift work, 22.1% for insomnia, 13.5% for premenstrual dysphoric disorder, and 10.6% for behavioural problems with Alzheimer's disease. CONCLUSIONS: Our results indicate that LT is regularly recommended by office-based physicians, especially psychiatrists. However, there is potential for greater application of LT in indications other than depressive disorder. The results found here are comparable to previous findings in psychiatric hospitals.

8.
Wien Klin Wochenschr ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38662240

RESUMO

Modern electroconvulsive therapy (ECT) and the approval of nasal esketamine for clinical use have significantly improved the approach to treatment-resistant depression (TRD), which is defined as non-response to at least two different courses of antidepressants with verified adherence to treatment, adequate dosage, and duration of treatment. The goal of this literature review is to present the newest evidence regarding efficacy and safety. Furthermore, we aim to provide an overview of future perspectives in this field of research, for example, regarding structural and molecular effects. Both treatment methods will be critically evaluated for their individual advantages, disadvantages, and response rates. Firstly, we will discuss the well-established method of ECT and its different treatment modalities. Secondly, we will discuss the properties of ketamine, the discovery of its antidepressive effects and the route to clinical approval of the esketamine nasal spray. We will comment on research settings which have evaluated intravenous ketamine against ECT. The decision-making process between esketamine nasal spray or ECT should include the assessment of contraindications, age, severity of disease, presence of psychotic symptoms, patient preference and treatment accessibility. We conclude that both treatment options are highly effective in TRD. If both are indicated, pragmatically esketamine will be chosen before ECT; however, ECT studies in ketamine non-responders are missing.

9.
J Affect Disord ; 324: 660-669, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603604

RESUMO

BACKGROUND: Previous studies suggest that transcranial magnetic stimulation exerts antidepressant effects by altering functional connectivity (FC). However, knowledge about this mechanism is still limited. Here, we aimed to investigate the effect of bilateral sequential theta-burst stimulation (TBS) on FC in treatment-resistant depression (TRD) in a sham-controlled longitudinal study. METHODS: TRD patients (n = 20) underwent a three-week treatment of intermittent TBS of the left and continuous TBS of the right dorsolateral prefrontal cortex (DLPFC). Upon this trial's premature termination, 15 patients had received active TBS and five patients sham stimulation. Resting-state functional magnetic resonance imaging was performed at baseline and after treatment. FC (left and right DLPFC) was estimated for each participant, followed by group statistics (t-tests). Furthermore, depression scores were analyzed (linear mixed models analysis) and tested for correlation with FC. RESULTS: Both groups exhibited reductions of depression scores, however, there was no significant main effect of group, or group and time. Anticorrelations between DLPFC and the subgenual cingulate cortex (sgACC) were observed for baseline FC, corresponding to changes in depression severity. Treatment did not significantly change DLPFC-sgACC connectivity, but significantly reduced FC between the left stimulation target and bilateral anterior insula. CONCLUSIONS: Our data is compatible with previous reports on the relevance of anticorrelation between DLPFC and sgACC for treatment success. Furthermore, FC changes between left DLPFC and bilateral anterior insula highlight the effect of TBS on the salience network. LIMITATIONS: Due to the limited sample size, results should be interpreted with caution and are of exploratory nature.


Assuntos
Córtex Pré-Frontal , Estimulação Magnética Transcraniana , Humanos , Depressão , Giro do Cíngulo , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Estimulação Magnética Transcraniana/métodos
10.
Transl Psychiatry ; 13(1): 208, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322010

RESUMO

Variants within the monoamine oxidase A (MAO-A, MAOA) and tryptophan hydroxylase 2 (TPH2) genes, the main enzymes in cerebral serotonin (5-HT) turnover, affect risk for depression. Depressed cohorts show increased cerebral MAO-A in positron emission tomography (PET) studies. TPH2 polymorphisms might also influence brain MAO-A because availability of substrates (i.e. monoamine concentrations) were shown to affect MAO-A levels. We assessed the effect of MAOA (rs1137070, rs2064070, rs6323) and TPH2 (rs1386494, rs4570625) variants associated with risk for depression and related clinical phenomena on global MAO-A distribution volume (VT) using [11C]harmine PET in 51 participants (21 individuals with seasonal affective disorder (SAD) and 30 healthy individuals (HI)). Statistical analyses comprised general linear models with global MAO-A VT as dependent variable, genotype as independent variable and age, sex, group (individuals with SAD, HI) and season as covariates. rs1386494 genotype significantly affected global MAO-A VT after correction for age, group and sex (p < 0.05, corr.), with CC homozygotes showing 26% higher MAO-A levels. The role of rs1386494 on TPH2 function or expression is poorly understood. Our results suggest rs1386494 might have an effect on either, assuming that TPH2 and MAO-A levels are linked by their common product/substrate, 5-HT. Alternatively, rs1386494 might influence MAO-A levels via another mechanism, such as co-inheritance of other genetic variants. Our results provide insight into how genetic variants within serotonin turnover translate to the cerebral serotonin system. Clinicaltrials.gov Identifier: NCT02582398. EUDAMED Number: CIV-AT-13-01-009583.


Assuntos
Transtorno Afetivo Sazonal , Serotonina , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Harmina/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Transtorno Afetivo Sazonal/metabolismo , Serotonina/metabolismo
11.
Transl Psychiatry ; 13(1): 33, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725835

RESUMO

Theta-burst stimulation (TBS) represents a brain stimulation technique effective for treatment-resistant depression (TRD) as underlined by meta-analyses. While the methodology undergoes constant refinement, bilateral stimulation of the dorsolateral prefrontal cortex (DLPFC) appears promising to restore left DLPFC hypoactivity and right hyperactivity found in depression. The post-synaptic inhibitory serotonin-1A (5-HT1A) receptor, also occurring in the DLPFC, might be involved in this mechanism of action. To test this hypothesis, we performed PET-imaging using the tracer [carbonyl-11C]WAY-100635 including arterial blood sampling before and after a three-week treatment with TBS in 11 TRD patients compared to sham stimulation (n = 8 and n = 3, respectively). Treatment groups were randomly assigned, and TBS protocol consisted of excitatory intermittent TBS to the left and inhibitory continuous TBS to the right DLPFC. A linear mixed model including group, hemisphere, time, and Hamilton Rating Scale for Depression (HAMD) score revealed a 3-way interaction effect of group, time, and HAMD on specific distribution volume (VS) of 5-HT1A receptor. While post-hoc comparisons showed no significant changes of 5-HT1A receptor VS in either group, higher 5-HT1A receptor VS after treatment correlated with greater difference in HAMD (r = -0.62). The results of this proof-of-concept trial hint towards potential effects of TBS on the distribution of the 5-HT1A receptor. Due to the small sample size, all results must, however, be regarded with caution.


Assuntos
Córtex Pré-Frontal Dorsolateral , Serotonina , Humanos , Depressão , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Receptor 5-HT1A de Serotonina , Estimulação Magnética Transcraniana/métodos , Estudo de Prova de Conceito
13.
Front Mol Neurosci ; 15: 913274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909445

RESUMO

Background: Theta burst stimulation (TBS) belongs to one of the biological antidepressant treatment options. When applied bilaterally, excitatory intermittent TBS (iTBS) is commonly targeted to the left and inhibitory continuous TBS (cTBS) to the right dorsolateral prefrontal cortex. TBS was shown to influence neurotransmitter systems, while iTBS is thought to interfere with glutamatergic circuits and cTBS to mediate GABAergic neurotransmission. Objectives: We aimed to expand insights into the therapeutic effects of TBS on the GABAergic and glutamatergic system utilizing 3D-multivoxel magnetic resonance spectroscopy imaging (MRSI) in combination with a novel surface-based MRSI analysis approach to investigate changes of cortical neurotransmitter levels in patients with treatment-resistant depression (TRD). Methods: Twelve TRD patients (five females, mean age ± SD = 35 ± 11 years) completed paired MRSI measurements, using a GABA-edited 3D-multivoxel MEGA-LASER sequence, before and after 3 weeks of bilateral TBS treatment. Changes in cortical distributions of GABA+/tNAA (GABA+macromolecules relative to total N-acetylaspartate) and Glx/tNAA (Glx = mixed signal of glutamate and glutamine), were investigated in a surface-based region-of-interest (ROI) analysis approach. Results: ANCOVAs revealed a significant increase in Glx/tNAA ratios in the left caudal middle frontal area (p corr. = 0.046, F = 13.292), an area targeted by iTBS treatment. Whereas, contralateral treatment with cTBS evoked no alterations in glutamate or GABA concentrations. Conclusion: This study demonstrates surface-based adaptions in the stimulation area to the glutamate metabolism after excitatory iTBS but not after cTBS, using a novel surface-based analysis of 3D-MRSI data. The reported impact of facilitatory iTBS on glutamatergic neurotransmission provides further insight into the neurobiological effects of TBS in TRD.

14.
Brain Stimul ; 14(4): 927-937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34119669

RESUMO

BACKGROUND: Increases in the volume of the amygdala and hippocampus after electroconvulsive therapy (ECT) are among the most robust effects known to the brain-imaging field. Recent advances in the segmentation of substructures of these regions allow for novel insights on the relationship between brain structure and clinical outcomes of ECT. OBJECTIVE: We aimed to provide a comprehensive synthesis of evidence available on changes in brain structure after ECT, including recently published data on hippocampal subfields. METHODS: A meta-analysis of published studies was carried out using random-effects models of standardized mean change of regional brain volumes measured with longitudinal magnetic resonance imaging of depressive patients before and after a series of ECT. RESULTS: Data from 21 studies (543 depressed patients) were analysed, including 6 studies (118 patients) on hippocampal subfields. Meta-analyses could be carried out for seven brain regions for which data from at least three published studies was available. We observed increases in left and right hippocampi, amygdalae, cornua ammonis (CA) 1, CA 2/3, dentate gyri (DG) and subicula with standardized mean change scores ranging between 0.34 and 1.15. The model did not reveal significant volume increases in the caudate. Meta-regression indicated a negative relationship between the reported increases in the DG and relative symptom improvement (-0.27 (SE: 0.09) per 10%). CONCLUSIONS: ECT is accompanied by significant volume increases in the bilateral hippocampus and amygdala that are not associated with treatment outcome. Among hippocampal subfields, the most robust volume increases after ECT were measured in the dentate gyrus. The indicated negative correlation of this effect with antidepressant efficacy warrants replication in data of individual patients.


Assuntos
Eletroconvulsoterapia , Tonsila do Cerebelo/diagnóstico por imagem , Depressão , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
15.
Transl Psychiatry ; 9(1): 5, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30664620

RESUMO

Alterations of the 5-HT1A receptor and BDNF have consistently been associated with affective disorders. Two functional single nucleotide polymorphisms (SNPs), rs6295 of the serotonin 1A receptor gene (HTR1A) and rs6265 of brain-derived neurotrophic factor gene (BDNF), may impact transcriptional regulation and expression of the 5-HT1A receptor. Here we investigated interaction effects of rs6295 and rs6265 on 5-HT1A receptor binding. Forty-six healthy subjects were scanned with PET using the radioligand [carbonyl-11C]WAY-100635. Genotyping was performed for rs6265 and rs6295. Subjects showing a genotype with at least three risk alleles (G of rs6295 or A of rs6265) were compared to control genotypes. Cortical surface binding potential (BPND) was computed for 32 cortical regions of interest (ROI). Mixed model was applied to study main and interaction effects of ROI and genotype. ANOVA was used for post hoc analyses. Individuals with the risk genotypes exhibited an increase in 5-HT1A receptor binding by an average of 17% (mean BPND 3.56 ± 0.74 vs. 2.96 ± 0.88). Mixed model produced an interaction effect of ROI and genotype on BPND and differences could be demonstrated in 10 ROI post hoc. The combination of disadvantageous allelic expression of rs6295 and rs6265 may result in a 5-HT1A receptor profile comparable to affective disorders as increased 5-HT1A receptor binding is a well published phenotype of depression. Thus, epistasis between BDNF and HTR1A may contribute to the multifactorial risk for affective disorders and our results strongly advocate further research on this genetic signature in affective disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Transtorno Depressivo/genética , Epistasia Genética , Receptor 5-HT1A de Serotonina/metabolismo , Adulto , Alelos , Encéfalo/diagnóstico por imagem , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos Transversais , Feminino , Genótipo , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Piperazinas/metabolismo , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons , Piridinas/metabolismo , Receptor 5-HT1A de Serotonina/genética
16.
Brain Stimul ; 12(3): 714-723, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30635228

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) constitutes one of the most effective antidepressant treatment strategies in major depression (MDD). Despite its common use and uncontested efficacy, its mechanism of action is still insufficiently understood. Previously, we showed that ECT is accompanied by a global decrease of serotonin-1A receptors in MDD; however, further studies to investigate the involvement of the serotonergic system in the mechanism of action of ECT are warranted. The monoamine oxidase A (MAO-A) represents an important target for antidepressant treatments and was found to be increased in MDD. Here, we investigated whether ECT impacts on MAO-A levels in treatment-resistant patients (TRD). METHODS: 16 TRD patients (12 female, age 45.94 ±â€¯9.68 years, HAMD 25.12 ±â€¯3.16) with unipolar depression according to DSM-IV were scanned twice before (PET1 and PET2, to assess test-retest variability under constant psychopharmacotherapy) and once after (PET3) completing a minimum of eight unilateral ECT sessions using positron emission tomography and the radioligand [11C]harmine to assess cerebral MAO-A distribution volumes (VT). Age- and sex-matched healthy subjects (HC) were measured once. RESULTS: Response rate to ECT was 87.5%. MAO-A VT was found to be significantly reduced after ECT in TRD patients (-3.8%) when assessed in 27 a priori defined ROIs (p < 0.001). Test-retest variability between PET1 and PET2 was 3.1%. MAO-A VT did not significantly differ between TRD patients and HC at baseline. CONCLUSIONS: The small effect size of the significant reduction of MAO-A VT after ECT in the range of test-retest variability does not support the hypothesis of a clinically relevant mechanism of action of ECT based on MAO-A. Furthermore, in contrast to studies reporting elevated MAO-A VT in unmedicated depressed patients, MAO-A levels were found to be similar in TRD patients and HC which might be attributed to the continuous antidepressant pharmacotherapy in the present sample.


Assuntos
Encéfalo/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/terapia , Eletroconvulsoterapia/efeitos adversos , Monoaminoxidase/metabolismo , Adulto , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Eletroconvulsoterapia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons
18.
Transl Psychiatry ; 8(1): 198, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242221

RESUMO

Increased cerebral monoamine oxidase A (MAO-A) levels have been shown in non-seasonal depression using positron emission tomography (PET). Seasonal affective disorder (SAD) is a sub-form of major depressive disorder and is typically treated with bright light therapy (BLT). The serotonergic system is affected by season and light. Hence, this study aims to assess the relevance of brain MAO-A levels to the pathophysiology and treatment of SAD. Changes to cerebral MAO-A distribution (1) in SAD in comparison to healthy controls (HC), (2) after treatment with BLT and (3) between the seasons, were investigated in 24 patients with SAD and 27 HC using [11C]harmine PET. PET scans were performed in fall/winter before and after 3 weeks of placebo-controlled BLT, as well as in spring/summer. Cerebral MAO-A distribution volume (VT, an index of MAO-A density) did not differ between patients and HC at any of the three time-points. However, MAO-A VT decreased from fall/winter to spring/summer in the HC group (F1, 187.84 = 4.79, p < 0.050), while SAD showed no change. In addition, BLT, but not placebo, resulted in a significant reduction in MAO-A VT (F1, 208.92 = 25.96, p < 0.001). This is the first study to demonstrate an influence of BLT on human cerebral MAO-A levels in vivo. Furthermore, we show that SAD may lack seasonal dynamics in brain MAO-A levels. The lack of a cross-sectional difference between patients and HC, in contrast to studies in non-seasonal depression, may be due to the milder symptoms typically shown by patients with SAD.


Assuntos
Encéfalo/metabolismo , Monoaminoxidase/metabolismo , Fototerapia , Transtorno Afetivo Sazonal/metabolismo , Transtorno Afetivo Sazonal/terapia , Adulto , Encéfalo/fisiopatologia , Radioisótopos de Carbono , Feminino , Harmina , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Resultado do Tratamento
19.
J Clin Psychiatry ; 78(2): 215-222, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28068461

RESUMO

OBJECTIVE: Despite a broad arsenal of antidepressants, about a third of patients suffering from major depressive disorder (MDD) do not respond sufficiently to adequate treatment. Using the data pool of the Group for the Study of Resistant Depression and machine learning, we intended to draw new insights featuring 48 clinical, sociodemographic, and psychosocial predictors for treatment outcome. METHOD: Patients were enrolled starting from January 2000 and diagnosed according to DSM-IV. Treatment-resistant depression (TRD) was defined by a 17-item Hamilton Depression Rating Scale (HDRS) score ≥ 17 after at least 2 antidepressant trials of adequate dosage and length. Remission was defined by an HDRS score < 8. Stepwise predictor reduction using randomForest was performed to find the optimal number for classification of treatment outcome. After importance values were generated, prediction for remission and resistance was performed in a training sample of 400 patients. For prediction, we used a set of 80 patients not featured in the training sample and computed receiver operating characteristics. RESULTS: The most useful predictors for treatment outcome were the timespan between first and last depressive episode, age at first antidepressant treatment, response to first antidepressant treatment, severity, suicidality, melancholia, number of lifetime depressive episodes, patients' admittance type, education, occupation, and comorbid diabetes, panic, and thyroid disorder. While single predictors could not reach a prediction accuracy much different from random guessing, by combining all predictors, we could detect resistance with an accuracy of 0.737 and remission with an accuracy of 0.850. Consequently, 65.5% of predictions for TRD and 77.7% for remission can be expected to be accurate. CONCLUSIONS: Using machine learning algorithms, we could demonstrate success rates of 0.737 for predicting TRD and 0.850 for predicting remission, surpassing predictive capabilities of clinicians. Our results strengthen data mining and suggest the benefit of focus on interaction-based statistics. Considering that all predictors can easily be obtained in a clinical setting, we hope that our model can be tested by other research groups.


Assuntos
Transtorno Depressivo Maior/terapia , Transtorno Depressivo Resistente a Tratamento/terapia , Modelos Psicológicos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Indução de Remissão , Algoritmos , Antidepressivos/uso terapêutico , Comorbidade , Demografia , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/psicologia , Transtorno Depressivo Resistente a Tratamento/diagnóstico , Transtorno Depressivo Resistente a Tratamento/psicologia , Humanos , Aprendizado de Máquina , Prognóstico , Escalas de Graduação Psiquiátrica/estatística & dados numéricos , Reprodutibilidade dos Testes , Fatores Sociológicos
20.
Front Hum Neurosci ; 11: 48, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28220069

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) modulate serotonergic neurotransmission by blocking reuptake of serotonin from the extracellular space. Up to now, it remains unclear how SSRIs achieve their antidepressant effect. However, task-based and resting state functional magnetic resonance imaging studies, have demonstrated connectivity changes between brain regions. Here, we use positron emission tomography (PET) to quantify SSRI's main target, the serotonin transporter (SERT), and assess treatment-induced molecular changes in the interregional relation of SERT binding potential (BPND). Nineteen out-patients with major depressive disorder (MDD) and 19 healthy controls (HC) were included in this study. Patients underwent three PET measurements with the radioligand [11C]DASB: (1) at baseline, (2) after a first SSRI dose; and (3) following at least 3 weeks of daily intake. Controls were measured once with PET. Correlation analyses were restricted to brain regions repeatedly implicated in MDD pathophysiology. After 3 weeks of daily SSRI administration a significant increase in SERT BPND correlations of anterior cingulate cortex and insula with the amygdala, midbrain, hippocampus, pallidum and putamen (p < 0.05; false discovery rate, FDR corrected) was revealed. No significant differences were found when comparing MDD patients and HC at baseline. These findings are in line with the clinical observation that treatment response to SSRIs is often achieved only after a latency of several weeks. The elevated associations in interregional SERT associations may be more closely connected to clinical outcomes than regional SERT occupancy measures and could reflect a change in the regional interaction of serotonergic neurotransmission during antidepressant treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA