Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(22): 11740-11747, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31114817

RESUMO

To control the size and structure of supported Pt catalysts, the influence of additional metal particles and the effect of supports were elucidated during the cracking reaction of n-dodecane under supercritical reaction conditions. The dynamical changes in nanocatalysts and catalytic activity are studied under realistic reaction conditions by using a combination of simultaneous temperature-programmed heating, in situ Small Angle X-ray Scattering (SAXS) and X-ray Absorption Near Edge Structure (XANES). In situ SAXS results indicate that the stability of the catalysts increases with Sn concentration. In situ XANES analysis reveals that the degree of oxidation and the electronic states of catalysts are dependent on the amount of Sn. Carbonaceous deposits over spent catalysts were characterized by Raman spectroscopy, indicating that the highest Sn loading inhibits the formation of disordered graphitic lattices, which leads to an increased catalytic activity. SiO2, γ-Al2O3 and Mg(Al)Ox were employed as supports to investigate the support effect on the stability of Pt catalysts. In situ SAXS and XANES results clearly show the improved stability of catalysts on γ-Al2O3 and Mg(Al)Ox supports compared to Pt catalysts on SiO2 and the electronic states of catalysts are strongly influenced by support materials.

2.
Angew Chem Int Ed Engl ; 56(30): 8828-8833, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28544178

RESUMO

Core-shell architectures offer an effective way to tune and enhance the properties of noble-metal catalysts. Herein, we demonstrate the synthesis of Pt shell on titanium tungsten nitride core nanoparticles (Pt/TiWN) by high temperature ammonia nitridation of a parent core-shell carbide material (Pt/TiWC). X-ray photoelectron spectroscopy revealed significant core-level shifts for Pt shells supported on TiWN cores, corresponding to increased stabilization of the Pt valence d-states. The modulation of the electronic structure of the Pt shell by the nitride core translated into enhanced CO tolerance during hydrogen electrooxidation in the presence of CO. The ability to control shell coverage and vary the heterometallic composition of the shell and nitride core opens up attractive opportunities to synthesize a broad range of new materials with tunable catalytic properties.

3.
Annu Rev Chem Biomol Eng ; 9: 413-450, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29641915

RESUMO

Microkinetic analysis plays an important role in catalyst design because it provides insight into the fundamental surface chemistry that controls catalyst performance. In this review, we summarize the development of microkinetic models and the inclusion of scaling relationships in these models. We discuss the importance of achieving stoichiometric and thermodynamic consistency in developing microkinetic models. We also outline how analysis of the maximum rates of elementary steps can be used to determine which transition states and adsorbed intermediates are kinetically significant, allowing the derivation of general reaction kinetics rate expressions in terms of changes in binding energies of the relevant transition states and intermediates. Through these analyses, we present how to predict optimal surface coverages and binding energies of adsorbed species, as well as the extent of potential rate improvement for a catalytic system. For systems in which the extent of potential rate improvement is small because of limitations imposed by scaling relations, different approaches, including the addition of promoters and formation of catalysts containing multiple functionalities, can be used to break the scaling relations and obtain further rate enhancement.


Assuntos
Modelos Teóricos , Catálise , Entropia , Gases/química , Cinética , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA