Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 4): 671-685, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318367

RESUMO

An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤103 s-1), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in ≥340 µs, compatible with the maximum length of the pulse train (550 µs). Results from rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87 TPa s-1 was observed during the fast compression of Au, while a strain rate of ∼1100 s-1 was achieved during the rapid compression of N2 at 23 TPa s-1.


Assuntos
Diamante , Lasers , Difração de Raios X , Pressão , Raios X
2.
J Phys Chem Lett ; 12(12): 3246-3252, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33764078

RESUMO

The ultrafast synthesis of ε-Fe3N1+x in a diamond-anvil cell (DAC) from Fe and N2 under pressure was observed using serial exposures of an X-ray free electron laser (XFEL). When the sample at 5 GPa was irradiated by a pulse train separated by 443 ns, the estimated sample temperature at the delay time was above 1400 K, confirmed by in situ transformation of α- to γ-iron. Ultimately, the Fe and N2 reacted uniformly throughout the beam path to form Fe3N1.33, as deduced from its established equation of state (EOS). We thus demonstrate that the activation energy provided by intense X-ray exposures in an XFEL can be coupled with the source time structure to enable exploration of the time-dependence of reactions under high-pressure conditions.

3.
J Phys Chem Lett ; 11(5): 1828-1834, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32048851

RESUMO

Superconductivity near room temperature in the sulfur-hydrogen system arises from a sequence of reactions at high pressures, with X-ray diffraction experiments playing a central role in understanding these chemical-structural transformations and the corresponding S:H stoichiometry. Here we document X-ray irradiation acting as both a probe and as a driver of chemical reaction in this dense hydride system. We observe a reaction between molecular hydrogen (H2) and elemental sulfur (S8) under high pressure, induced directly by X-ray illumination, at photon energies of 12 keV using a free electron laser. The rapid synthesis of hydrogen sulfide (H2S) at 0.3 GPa was confirmed by optical observations, spectroscopic measurements, and microstructural changes detected by X-ray diffraction. These results document X-ray induced chemical synthesis of superconductor-forming dense hydrides, revealing an alternative production strategy and confirming the disruptive nature of X-ray exposure in studies on high-pressure hydrogen chalcogenides, from water to high-temperature superconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA