Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 630(8016): 493-500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718835

RESUMO

The introduction of AlphaFold 21 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design2-6. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein-ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein-nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody-antigen prediction accuracy compared with AlphaFold-Multimer v.2.37,8. Together, these results show that high-accuracy modelling across biomolecular space is possible within a single unified deep-learning framework.


Assuntos
Aprendizado Profundo , Ligantes , Modelos Moleculares , Proteínas , Software , Humanos , Anticorpos/química , Anticorpos/metabolismo , Antígenos/metabolismo , Antígenos/química , Aprendizado Profundo/normas , Íons/química , Íons/metabolismo , Simulação de Acoplamento Molecular , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Reprodutibilidade dos Testes , Software/normas
2.
Nature ; 596(7873): 583-589, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34265844

RESUMO

Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1-4, the structures of around 100,000 unique proteins have been determined5, but this represents a small fraction of the billions of known protein sequences6,7. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence-the structure prediction component of the 'protein folding problem'8-has been an important open research problem for more than 50 years9. Despite recent progress10-14, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)15, demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.


Assuntos
Redes Neurais de Computação , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Sequência de Aminoácidos , Biologia Computacional/métodos , Biologia Computacional/normas , Bases de Dados de Proteínas , Aprendizado Profundo/normas , Modelos Moleculares , Reprodutibilidade dos Testes , Alinhamento de Sequência
3.
Nature ; 596(7873): 590-596, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34293799

RESUMO

Protein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of effort, 17% of the total residues in human protein sequences are covered by an experimentally determined structure1. Here we markedly expand the structural coverage of the proteome by applying the state-of-the-art machine learning method, AlphaFold2, at a scale that covers almost the entire human proteome (98.5% of human proteins). The resulting dataset covers 58% of residues with a confident prediction, of which a subset (36% of all residues) have very high confidence. We introduce several metrics developed by building on the AlphaFold model and use them to interpret the dataset, identifying strong multi-domain predictions as well as regions that are likely to be disordered. Finally, we provide some case studies to illustrate how high-quality predictions could be used to generate biological hypotheses. We are making our predictions freely available to the community and anticipate that routine large-scale and high-accuracy structure prediction will become an important tool that will allow new questions to be addressed from a structural perspective.


Assuntos
Biologia Computacional/normas , Aprendizado Profundo/normas , Modelos Moleculares , Conformação Proteica , Proteoma/química , Conjuntos de Dados como Assunto/normas , Diacilglicerol O-Aciltransferase/química , Glucose-6-Fosfatase/química , Humanos , Proteínas de Membrana/química , Dobramento de Proteína , Reprodutibilidade dos Testes
4.
Proteins ; 89(12): 1711-1721, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599769

RESUMO

We describe the operation and improvement of AlphaFold, the system that was entered by the team AlphaFold2 to the "human" category in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The AlphaFold system entered in CASP14 is entirely different to the one entered in CASP13. It used a novel end-to-end deep neural network trained to produce protein structures from amino acid sequence, multiple sequence alignments, and homologous proteins. In the assessors' ranking by summed z scores (>2.0), AlphaFold scored 244.0 compared to 90.8 by the next best group. The predictions made by AlphaFold had a median domain GDT_TS of 92.4; this is the first time that this level of average accuracy has been achieved during CASP, especially on the more difficult Free Modeling targets, and represents a significant improvement in the state of the art in protein structure prediction. We reported how AlphaFold was run as a human team during CASP14 and improved such that it now achieves an equivalent level of performance without intervention, opening the door to highly accurate large-scale structure prediction.


Assuntos
Modelos Moleculares , Redes Neurais de Computação , Dobramento de Proteína , Proteínas , Software , Sequência de Aminoácidos , Biologia Computacional , Aprendizado Profundo , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína
5.
J Chem Phys ; 153(14): 144112, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33086827

RESUMO

Free energy perturbation (FEP) was proposed by Zwanzig [J. Chem. Phys. 22, 1420 (1954)] more than six decades ago as a method to estimate free energy differences and has since inspired a huge body of related methods that use it as an integral building block. Being an importance sampling based estimator, however, FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions. One strategy to mitigate this problem, called Targeted FEP, uses a high-dimensional mapping in configuration space to increase the overlap of the underlying distributions. Despite its potential, this method has attracted only limited attention due to the formidable challenge of formulating a tractable mapping. Here, we cast Targeted FEP as a machine learning problem in which the mapping is parameterized as a neural network that is optimized so as to increase the overlap. We develop a new model architecture that respects permutational and periodic symmetries often encountered in atomistic simulations and test our method on a fully periodic solvation system. We demonstrate that our method leads to a substantial variance reduction in free energy estimates when compared against baselines, without requiring any additional data.

6.
Phys Chem Chem Phys ; 19(20): 12585-12603, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28367548

RESUMO

Machine learning techniques are being increasingly used as flexible non-linear fitting and prediction tools in the physical sciences. Fitting functions that exhibit multiple solutions as local minima can be analysed in terms of the corresponding machine learning landscape. Methods to explore and visualise molecular potential energy landscapes can be applied to these machine learning landscapes to gain new insight into the solution space involved in training and the nature of the corresponding predictions. In particular, we can define quantities analogous to molecular structure, thermodynamics, and kinetics, and relate these emergent properties to the structure of the underlying landscape. This Perspective aims to describe these analogies with examples from recent applications, and suggest avenues for new interdisciplinary research.

7.
J Chem Phys ; 144(12): 124119, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27036439

RESUMO

Methods developed to explore and characterise potential energy landscapes are applied to the corresponding landscapes obtained from optimisation of a cost function in machine learning. We consider neural network predictions for the outcome of local geometry optimisation in a triatomic cluster, where four distinct local minima exist. The accuracy of the predictions is compared for fits using data from single and multiple points in the series of atomic configurations resulting from local geometry optimisation and for alternative neural networks. The machine learning solution landscapes are visualised using disconnectivity graphs, and signatures in the effective heat capacity are analysed in terms of distributions of local minima and their properties.

8.
J Chem Phys ; 136(19): 194101, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22612074

RESUMO

We describe a replica exchange strategy where trial swap configurations are generated by nonequilibrium switching simulations. By devoting simulation time to the switching simulations, one can systematically increase an effective overlap between replicas, which leads to an increased exchange acceptance rate and less correlated equilibrium samples. In this paper, we derive our method for a general class of stochastic dynamics, and discuss various strategies for enhancing replica overlap through novel dynamical schemes and prudent choices of switching protocols. We then demonstrate our method on a model system of alanine dipeptide in implicit solvent, characterizing decreases in data correlations and gains in sampling efficiency.

9.
Proc Natl Acad Sci U S A ; 106(30): 12224-9, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19592512

RESUMO

We introduce a replica exchange (parallel tempering) method in which attempted configuration swaps are generated using nonequilibrium work simulations. By effectively increasing phase space overlap, this approach mitigates the need for many replicas. We illustrate our method by using a model system and show that it is able to achieve the computational efficiency of ordinary replica exchange, using fewer replicas.


Assuntos
Algoritmos , Simulação por Computador , Modelos Químicos , Cinética , Método de Monte Carlo
10.
J Phys Chem B ; 119(20): 6155-69, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25915525

RESUMO

We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys. 2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, where Kirkwood sampling is used for generating trial Monte Carlo moves. Using this method, equilibrium distributions corresponding to different temperatures and potential energy functions can be generated from a given set of low-order correlations. Since Kirkwood samples are generated independently, this method is ideally suited for massively parallel distributed computing. The second approach is a variant of reservoir replica exchange, where Kirkwood sampling is used to construct a reservoir of conformations, which exchanges conformations with the replicas performing equilibrium sampling corresponding to different thermodynamic states. Coupling with the Kirkwood reservoir enhances sampling by facilitating global jumps in the conformational space. The efficiency of both methods depends on the overlap of the Kirkwood distribution with the target equilibrium distribution. We present proof-of-concept results for a model nine-atom linear molecule and alanine dipeptide.


Assuntos
Dipeptídeos/química , Termodinâmica , Algoritmos , Conformação Molecular , Método de Monte Carlo
11.
Sci Rep ; 5: 10386, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25999294

RESUMO

Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such 'intrinsically disordered' landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an α-helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Supressoras de Tumor/química , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Ligação de Hidrogênio , Camundongos , Simulação de Dinâmica Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Solventes/química , Termodinâmica , Proteínas Supressoras de Tumor/metabolismo
12.
J Chem Theory Comput ; 10(12): 5599-5605, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25512744

RESUMO

Effective parallel tempering simulations rely crucially on a properly chosen sequence of temperatures. While it is desirable to achieve a uniform exchange acceptance rate across neighboring replicas, finding a set of temperatures that achieves this end is often a difficult task, in particular for systems undergoing phase transitions. Here we present a method for determination of optimal replica spacings, which is based upon knowledge of local minima in the potential energy landscape. Working within the harmonic superposition approximation, we derive an analytic expression for the parallel tempering acceptance rate as a function of the replica temperatures. For a particular system and a given database of minima, we show how this expression can be used to determine optimal temperatures that achieve a desired uniform acceptance rate. We test our strategy for two atomic clusters that exhibit broken ergodicity, demonstrating that our method achieves uniform acceptance as well as significant efficiency gains.

13.
J Phys Chem B ; 116(45): 13490-7, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23078105

RESUMO

We investigate the solvent effects leading to dissociation of sodium chloride in water. Thermodynamic analysis reveals dissociation to be driven energetically and opposed entropically, with the loss in entropy due to an increasing number of solvent molecules entering the highly coordinated ionic solvation shell. We show through committor analysis that the ion-ion distance is an insufficient reaction coordinate, in agreement with previous findings. By application of committor analysis on various constrained solvent ensembles, we find that the dissociation event is generally sensitive to solvent fluctuations at long ranges, with both sterics and electrostatics of importance. The dynamics of the reaction reveal that solvent rearrangements leading to dissociation occur on time scales from 0.5 to 5 ps or longer, and that, near the transition state, inertial effects enhance the reaction probability of a given trajectory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA