Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Inherit Metab Dis ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973597

RESUMO

The protein encoded by COQ7 is required for CoQ10 synthesis in humans, hydroxylating 3-demethoxyubiquinol (DMQ10) in the second to last steps of the pathway. COQ7 mutations lead to a primary CoQ10 deficiency syndrome associated with a pleiotropic neurological disorder. This study shows the clinical, physiological, and molecular characterization of four new cases of CoQ10 primary deficiency caused by five mutations in COQ7, three of which have not yet been described, inducing mitochondrial dysfunction in all patients. However, the specific combination of the identified variants in each patient generated precise pathophysiological and molecular alterations in fibroblasts, which would explain the differential in vitro response to supplementation therapy. Our results suggest that COQ7 dysfunction could be caused by specific structural changes that affect the interaction with COQ9 required for the DMQ10 presentation to COQ7, the substrate access to the active site, and the maintenance of the active site structure. Remarkably, patients' fibroblasts share transcriptional remodeling, supporting a modification of energy metabolism towards glycolysis, which could be an adaptive mechanism against CoQ10 deficiency. However, transcriptional analysis of mitochondria-associated pathways showed distinct and dramatic differences between patient fibroblasts, which correlated with the extent of pathophysiological and neurological alterations observed in the probands. Overall, this study suggests that the combination of precise genetic diagnostics and the availability of new structural models of human proteins could help explain the origin of phenotypic pleiotropy observed in some genetic diseases and the different responses to available therapies.

2.
Biogerontology ; 15(2): 199-211, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24384733

RESUMO

Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.


Assuntos
Envelhecimento/sangue , Atividade Motora/fisiologia , Ubiquinona/análogos & derivados , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antioxidantes/metabolismo , Proteínas Sanguíneas/metabolismo , Colesterol/sangue , Estudos Transversais , Feminino , Humanos , Peroxidação de Lipídeos , Lipoproteínas LDL/sangue , Masculino , Pessoa de Meia-Idade , Carbonilação Proteica , Ubiquinona/sangue , Adulto Jovem
3.
Biofactors ; 47(4): 551-569, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33878238

RESUMO

Coenzyme Q10 (CoQ10 ) deficiency is a rare disease characterized by a decreased accumulation of CoQ10 in cell membranes. Considering that CoQ10 synthesis and most of its functions are carried out in mitochondria, CoQ10 deficiency cases are usually considered a mitochondrial disease. A relevant feature of CoQ10 deficiency is that it is the only mitochondrial disease with a successful therapy available, the CoQ10 supplementation. Defects in components of the synthesis machinery caused by mutations in COQ genes generate the primary deficiency of CoQ10 . Mutations in genes that are not directly related to the synthesis machinery cause secondary deficiency. Cases of CoQ10 deficiency without genetic origin are also considered a secondary deficiency. Both types of deficiency can lead to similar clinical manifestations, but the knowledge about primary deficiency is deeper than secondary. However, secondary deficiency cases may be underestimated since many of their clinical manifestations are shared with other pathologies. This review shows the current state of secondary CoQ10 deficiency, which could be even more relevant than primary deficiency for clinical activity. The analysis covers the fundamental features of CoQ10 deficiency, which are necessary to understand the biological and clinical differences between primary and secondary CoQ10 deficiencies. Further, a more in-depth analysis of CoQ10 secondary deficiency was undertaken to consider its origins, introduce a new way of classification, and include aging as a form of secondary deficiency.


Assuntos
Envelhecimento/genética , Alquil e Aril Transferases/genética , Ataxia/genética , GTP Fosfo-Hidrolases/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Debilidade Muscular/genética , Doença de Niemann-Pick Tipo C/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Envelhecimento/metabolismo , Alquil e Aril Transferases/metabolismo , Animais , Ataxia/metabolismo , Ataxia/patologia , Metabolismo Energético/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Mutação , Proteína C1 de Niemann-Pick/genética , Proteína C1 de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Transdução de Sinais , Ubiquinona/genética , Ubiquinona/metabolismo
4.
J Gerontol A Biol Sci Med Sci ; 69(4): 398-409, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23861386

RESUMO

Aging is a multifactorial process in which oxidative damage plays an important role. Resveratrol (RSV) and exercise delay some of the damages occurring during aging and increase life span and health span. We treated mice at different ages with RSV during 6 months and trained them during the last 6 weeks to determine if RSV and exercise induce changes in endogenous antioxidant activities in liver and if their effects depend on the age of the animal at the beginning of the intervention. Aging was accompanied by the increase in oxidative damage in liver especially affecting the glutathione-dependent system. Both RSV and exercise reversed the effect of aging and maintained high activities of glutathione, glutathione peroxidase, and glutathione transferase activities in old animals. NAD(P)H: quinone acceptor oxidoreductase activity was also increased. Modulation of antioxidant activities was not completely accompanied by changes at the protein level. Whereas glutathione peroxidase 1 protein increased in parallel to the higher activity in old animals, NAD(P)H: quinone acceptor oxidoreductase protein decreased by RSV although the activity was enhanced. Our results indicate that RSV and exercise revert the effect of aging in liver of old animals maintaining higher antioxidant activities and decreasing oxidative damage. Short-term interventions are enough to produce beneficial effects of RSV or exercise at later ages.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/farmacocinética , Fígado/metabolismo , Condicionamento Físico Animal , Estilbenos/farmacocinética , Animais , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA