Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Transgenic Res ; 28(5-6): 509-523, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31250247

RESUMO

Genetically modified (GM) maize has been grown and safely consumed on a global scale since its commercialization in 1996. However, questions have been raised about the potential impact that GM maize could have on native maize landraces in Mexico, which is the center of origin and diversity of maize. This research was conducted to evaluate potential changes to maize landraces in an unlikely event of transgene introgression. For this study, two GM traits that confer insect protection and herbicide tolerance in maize (MON 89034 and MON 88017), designated as VT3Pro, were introgressed into two Mexican landraces, Tuxpeño and Tabloncillo. Field trials were conducted across four environments to assess phenotypic characteristics, plant response to stressors, and kernel composition of landraces with and without VT3Pro traits. Furthermore, materials from four backcrossing generations were analyzed for segregation of these GM traits. Generally, no significant differences were observed between landraces with and without VT3Pro traits for the evaluated characteristics and the segregation analysis showed that GM traits, when introgressed into landraces, followed Mendelian principles. These results support the conclusion that, if inadvertently introgressed into landraces, VT3Pro traits are not expected to alter phenotypic or kernel characteristics, plant response to stressors (except for targeted insect protection and herbicide tolerance traits) and would segregate like any endogenous gene. These results should be taken into consideration when discussing benefits and risks associated with commercial production of GM maize hybrids in the centers of origin and diversity of maize.


Assuntos
Produtos Agrícolas/genética , Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas/genética , Zea mays/genética , Fluxo Gênico/genética , Herbicidas/efeitos adversos , Herbicidas/farmacologia , Humanos , México , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/genética , Zea mays/crescimento & desenvolvimento
2.
Transgenic Res ; 26(1): 135-151, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27771867

RESUMO

Environmental risk assessment (ERA) of genetically modified (GM) crops is a process to evaluate whether the biotechnology trait(s) in a GM crop may result in increased pest potential or harm to the environment. In this analysis, two GM insect-resistant (IR) herbicide-tolerant maize hybrids (MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6) and one herbicide-tolerant GM hybrid (MON-ØØ6Ø3-6) were compared with conventional maize hybrids of similar genetic backgrounds. Two sets of studies, Experimental Phase and Pilot Phase, were conducted across five ecological regions (ecoregions) in Mexico during 2009-2013, and data were subject to meta-analysis. Results from the Experimental Phase studies, which were used for ERA, indicated that the three GM hybrids were not different from conventional maize for early stand count, days-to-silking, days-to-anthesis, root lodging, stalk lodging, or final stand count. Statistically significant differences were observed for seedling vigor, ear height, plant height, grain moisture, and grain yield, particularly in the IR hybrids; however, none of these phenotypic differences are expected to contribute to a biological or ecological change that would result in an increased pest potential or ecological risk when cultivating these GM hybrids. Overall, results from the Experimental Phase studies are consistent with those from other world regions, confirming that there are no additional risks compared to conventional maize. Results from Pilot Phase studies indicated that, compared to conventional maize hybrids, no differences were detected for the agronomic and phenotypic characteristics measured on the three GM maize hybrids, with the exception of grain moisture and grain yield in the IR hybrids. Since MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6 confer resistance to target insect pests, they are an alternative for farmers in Mexico to protect the crop from insect damage. Additionally, the herbicide tolerance conferred by all three GM hybrids enables more cost-effective weed management.


Assuntos
Ecologia , Plantas Geneticamente Modificadas/genética , Sementes/genética , Zea mays/genética , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Meio Ambiente , Herbicidas/toxicidade , México , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
3.
Genetics ; 180(2): 1221-32, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18791250

RESUMO

Previous association analyses showed that variation at major regulatory genes contributes to standing variation for complex traits in Balsas teosinte, the progenitor of maize. This study expands our previous association mapping effort in teosinte by testing 123 markers in 52 candidate genes for association with 31 traits in a population of 817 individuals. Thirty-three significant associations for markers from 15 candidate genes and 10 traits survive correction for multiple testing. Our analyses suggest several new putative causative relationships between specific genes and trait variation in teosinte. For example, two ramosa genes (ra1 and ra2) associate with ear structure, and the MADS-box gene, zagl1, associates with ear shattering. Since zagl1 was previously shown to be a target of selection during maize domestication, we suggest that this gene was under selection for its effect on the loss of ear shattering, a key domestication trait. All observed effects were relatively small in terms of the percentage of phenotypic variation explained (<10%). We also detected several epistatic interactions between markers in the same gene that associate with the same trait. Candidate-gene-based association mapping appears to be a promising method for investigating the inheritance of complex traits in teosinte.


Assuntos
Genes de Plantas , Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico , Frequência do Gene , Genótipo , Haplótipos , Modelos Genéticos , Fenótipo , Seleção Genética , Zea mays/classificação
4.
PLoS One ; 11(3): e0151237, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963815

RESUMO

Insect-protected soybean (Glycine max (L.) Merr.) was developed to protect against foliage feeding by certain Lepidopteran insects. The assessment of potential consequences of transgene introgression from soybean to wild soybean (Glycine soja Seib. et Zucc.) is required as one aspect of the environmental risk assessment (ERA) in Japan. A potential hazard of insect-protected soybean may be hypothesized as transfer of a trait by gene flow to wild soybean and subsequent reduction in foliage feeding by Lepidopteran insects that result in increased weediness of wild soybean in Japan. To assess this potential hazard two studies were conducted. A three-year survey of wild soybean populations in Japan was conducted to establish basic information on foliage damage caused by different herbivores. When assessed across all populations and years within each prefecture, the total foliage from different herbivores was ≤ 30%, with the lowest levels of defoliation (< 2%) caused by Lepidopteran insects. A separate experiment using five levels of simulated defoliation (0%, 10%, 25%, 50% and 100%) was conducted to assess the impact on pod and seed production and time to maturity of wild soybean. The results indicated that there was no decrease in wild soybean plants pod or seed number or time to maturity at defoliation rates up to 50%. The results from these experiments indicate that wild soybean is not limited by lepidopteran feeding and has an ability to compensate for defoliation levels observed in nature. Therefore, the potential hazard to wild soybean from the importation of insect-protected soybean for food and feed into Japan is negligible.


Assuntos
Glycine max/fisiologia , Herbivoria , Insetos/fisiologia , Medição de Risco/métodos , Animais , Simulação por Computador , Ecossistema , Japão , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Glycine max/genética , Glycine max/crescimento & desenvolvimento
5.
PLoS One ; 10(7): e0131549, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26162097

RESUMO

Mexico, the center of origin of maize (Zea mays L.), has taken actions to preserve the identity and diversity of maize landraces and wild relatives. Historically, spatial isolation has been used in seed production to maintain seed purity. Spatial isolation can also be a key component for a strategy to minimize pollen-mediated gene flow in Mexico between transgenic maize and sexually compatible plants of maize conventional hybrids, landraces, and wild relatives. The objective of this research was to generate field maize-to-maize outcrossing data to help guide coexistence discussions in Mexico. In this study, outcrossing rates were determined and modeled from eight locations in six northern states, which represent the most economically important areas for the cultivation of hybrid maize in Mexico. At each site, pollen source plots were planted with a yellow-kernel maize hybrid and surrounded by plots with a white-kernel conventional maize hybrid (pollen recipient) of the same maturity. Outcrossing rates were then quantified by assessing the number of yellow kernels harvested from white-kernel hybrid plots. The highest outcrossing values were observed near the pollen source (12.9% at 1 m distance). The outcrossing levels declined sharply to 4.6, 2.7, 1.4, 1.0, 0.9, 0.5, and 0.5% as the distance from the pollen source increased to 2, 4, 8, 12, 16, 20, and 25 m, respectively. At distances beyond 20 m outcrossing values at all locations were below 1%. These trends are consistent with studies conducted in other world regions. The results suggest that coexistence measures that have been implemented in other geographies, such as spatial isolation, would be successful in Mexico to minimize transgenic maize pollen flow to conventional maize hybrids, landraces and wild relatives.


Assuntos
Fluxo Gênico , Genes de Plantas/genética , Pólen/genética , Zea mays/genética , Algoritmos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Cruzamentos Genéticos , Variação Genética , Genética Populacional , Geografia , Umidade , Hibridização Genética , México , Modelos Genéticos , Plantas Geneticamente Modificadas/genética , Polinização/genética , Dinâmica Populacional , Chuva , Sementes/genética , Sementes/crescimento & desenvolvimento , Temperatura , Vento , Zea mays/crescimento & desenvolvimento
6.
J Exp Bot ; 56(419): 2401-7, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16014364

RESUMO

In parts of the world where teosinte and maize are grown in close proximity, there is concern about gene flow between them. Pollen is the primary vehicle for gene flow. Quantifying the biophysical properties of pollen, such as its settling speed and dehydration rate, is important for evaluating outcrossing potential. These properties were measured for teosinte (Zea mays subsp. parviglumis) pollen. Pollen was found to have an average settling speed of 0.165 m s(-1), which agrees well with theoretical values based on the size of the pollen grains. The conductance of the pollen wall for water was derived from the time rate of change of pollen grain size and gave an average conductance of 3.42x10(-4) m s(-1). Water potential, psi, of teosinte pollen was determined at various values of relative water content (dry-weight basis), theta, by using a thermocouple psychrometer and by allowing samples of pollen to come to vapour equilibrium with various saturated salt solutions. Non-linear regression analysis of the data yielded psi (MPa) = -4.13 theta(-1.23) (r2=0.77). Results for conductance and psi were incorporated into a model equation for the rate of water loss from pollen grains, which yielded results that agreed well (r2=0.96) with observations of water loss from pollen grains in air. The data reported here are important building blocks in a model of teosinte pollen movement and should be helpful in establishing the main factors influencing the degree and the direction of pollination between teosinte populations and between maize and teosinte.


Assuntos
Pólen/química , Zea mays/fisiologia , Dessecação , Germinação , Cinética , Tamanho do Órgão , Pólen/efeitos dos fármacos , Cloreto de Sódio/farmacologia
7.
Theor Appl Genet ; 110(3): 519-26, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15592808

RESUMO

Gene flow between maize [Zea mays (L.)] and its wild relatives does occur, but at very low frequencies. Experiments were undertaken in Tapachula, Nayarit, Mexico to investigate gene flow between a hybrid maize, landraces of maize and teosinte (Z. mays ssp. mexicana, races Chalco and Central Plateau). Hybridization, flowering synchrony, pollen size and longevity, silk elongation rates, silk and trichome lengths and tassel diameter and morphology were measured. Hybrid and open-pollinated maize ears produced a mean of 8 and 11 seeds per ear, respectively, when hand-pollinated with teosinte pollen, which is approximately 1-2% of the ovules normally produced on a hybrid maize ear. Teosinte ears produced a mean of 0.2-0.3 seeds per ear when pollinated with maize pollen, which is more than one-fold fewer seeds than produced on a maize ear pollinated with teosinte pollen. The pollination rate on a per plant basis was similar in the context of a maize plant with 400-500 seeds and a teosinte plant with 30-40 inflorescences and 9-12 fruitcases per inflorescence. A number of other factors also influenced gene-flow direction: (1) between 90% and 95% of the fruitcases produced on teosinte that was fertilized by maize pollen were sterile; (2) teosinte collections were made in an area where incompatibility systems that limit fertilization are present; (3) silk longevity was much shorter for teosinte than for maize (approx. 4 days vs. approx. 11 days); (4) teosinte produced more pollen on a per plant basis than the landraces and commercial hybrid maize; (5) teosinte frequently produced lateral branches with silks close to a terminal tassel producing pollen. Collectively these factors tend to favor crossing in the direction of teosinte to maize. Our results support the hypothesis that gene flow and the subsequent introgression of maize genes into teosinte populations most probably results from crosses where teosinte first pollinates maize. The resultant hybrids then backcross with teosinte to introgress the maize genes into the teosinte genome. This approach would slow introgression and may help explain why teosinte continues to co-exist as a separate entity even though it normally grows in the vicinity of much larger populations of maize.


Assuntos
Genética Populacional , Hibridização Genética , Zea mays/genética , Zea mays/fisiologia , Cruzamento , Longevidade , México , Pólen/citologia , Reprodução/fisiologia , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA