Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(7): 3327-3349, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391026

RESUMO

Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.


Assuntos
Optogenética , Rodopsinas Microbianas , Rodopsinas Microbianas/genética , Transdução de Sinais
2.
J Am Chem Soc ; 145(40): 21832-21840, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773976

RESUMO

The light-gated ion channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) is the most frequently used optogenetic tool in neurosciences. However, the precise molecular mechanism of the channel opening and the correlation among retinal isomerization, the photocycle, and the channel activity of the protein are missing. Here, we present electrophysiological and spectroscopic investigations on the R120H variant of CrChR2. R120 is a key residue in an extended network linking the retinal chromophore to several gates of the ion channel. We show that despite the deficient channel activity, the photocycle of the variant is intact. In a comparative study for R120H and the wild type, we resolve the vibrational changes in the spectral range of the retinal and amide I bands across the time range from femtoseconds to seconds. Analysis of the amide I mode reveals a significant impairment of the ultrafast protein response after retinal excitation. We conclude that channel opening in CrChR2 is prepared immediately after retinal excitation. Additionally, chromophore isomerization is essential for both photocycle and channel activities, although both processes can occur independently.

3.
Photochem Photobiol Sci ; 22(8): 1809-1823, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37036621

RESUMO

A putative xanthorhodopsin-encoding gene, XR34, was found in the genome of the moderately halophilic gammaproteobacterium Salinivibrio socompensis S34, isolated from modern stromatolites found on the shore of Laguna Socompa (3570 m), Argentina Puna. XR-encoding genes were clustered together with genes encoding X-carotene, retinal (vitamin-A aldehyde), and carotenoid biosynthesis enzymes while the carotene ketolase gene critical for the salinixanthin antenna compound was absent. To identify its functional behavior, we herein overexpressed and characterized this intriguing microbial rhodopsin. Recombinant XR34 showed all the salient features of canonical microbial rhodopsin and covalently bound retinal as a functional chromophore with λmax = 561 nm (εmax ca. 60,000 M-1 cm-1). Two canonical counterions with pK values of around 6 and 3 were identified by pH titration of the recombinant protein. With a recovery time of approximately half an hour in the dark, XR34 shows light-dark adaptation shifting the absorption maximum from 551 to 561 nm. Laser-flash induced photochemistry at pH 9 (deprotonated primary counterion) identified a photocycle starting with a K-like intermediate, followed by an M-state (λmax ca. 400 nm, deprotonated Schiff base), and a final long wavelength-absorbing N- or O-like intermediate before returning to the parental 561 nm-state. Initiating the photocycle at pH 5 (protonated counterion) yields only bathochromic intermediates, due to the lacking capacity of the counterion to accept the Schiff base proton. Illumination of the membrane-embedded protein yielded a capacitive transport current. The presence of the M-intermediate under these conditions was demonstrated by a blue light-induced shunt process.


Assuntos
Bacteriorodopsinas , Bases de Schiff , Bases de Schiff/química , Carotenoides/metabolismo , Retinaldeído/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Concentração de Íons de Hidrogênio
4.
Proc Natl Acad Sci U S A ; 117(34): 20920-20925, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788371

RESUMO

In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green alga Chlamydomonas reinhardtii evolved blue light-excited channelrhodopsins (ChR1, 2) to navigate. When expressed in excitable nerve and muscle cells, ChRs can be used to control the membrane potential via illumination. In Arabidopsis plants, we used the algal ChR2-light switches as tools to stimulate plasmodesmata-interconnected photosynthetic cell networks by blue light and monitor the subsequent plasma membrane electrical responses. Blue-dependent stimulations of ChR2 expressing mesophyll cells, resting around -160 to -180 mV, reproducibly depolarized the membrane potential by 95 mV on average. Following excitation, mesophyll cells recovered their prestimulus potential not without transiently passing a hyperpolarization state. By combining optogenetics with voltage-sensing microelectrodes, we demonstrate that plant plasma membrane AHA-type H+-ATPase governs the gross repolarization process. AHA2 protein biochemistry and functional expression analysis in Xenopus oocytes indicates that the capacity of this H+ pump to recharge the membrane potential is rooted in its voltage- and pH-dependent functional anatomy. Thus, ChR2 optogenetics appears well suited to noninvasively expose plant cells to signal specific depolarization signatures. From the responses we learn about the molecular processes, plants employ to channel stress-associated membrane excitations into physiological responses.


Assuntos
Membrana Celular/metabolismo , Channelrhodopsins/metabolismo , Bombas de Próton/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Algas/metabolismo , Channelrhodopsins/fisiologia , Chlamydomonas reinhardtii/metabolismo , Cor , Concentração de Íons de Hidrogênio , Luz , Potenciais da Membrana/fisiologia , Optogenética/métodos , Bombas de Próton/fisiologia , Rodopsina/metabolismo , Transdução de Sinais
5.
Angew Chem Int Ed Engl ; 60(42): 23010-23017, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339559

RESUMO

The new class of microbial rhodopsins, called xenorhodopsins (XeRs),[1] extends the versatility of this family by inward H+ pumps.[2-4] These pumps are an alternative optogenetic tool to the light-gated ion channels (e.g. ChR1,2), because the activation of electrically excitable cells by XeRs is independent from the surrounding physiological conditions. In this work we functionally and spectroscopically characterized XeR from Nanosalina (NsXeR).[1] The photodynamic behavior of NsXeR was investigated on the ps to s time scale elucidating the formation of the J and K and a previously unknown long-lived intermediate. The pH dependent kinetics reveal that alkalization of the surrounding medium accelerates the photocycle and the pump turnover. In patch-clamp experiments the blue-light illumination of NsXeR in the M state shows a potential-dependent vectoriality of the photocurrent transients, suggesting a variable accessibility of reprotonation of the retinal Schiff base. Insights on the kinetically independent switching mechanism could furthermore be obtained by mutational studies on the putative intracellular H+ acceptor D220.


Assuntos
Bombas de Próton/metabolismo , Rodopsinas Microbianas/metabolismo , Bases de Schiff/química , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Cinética , Luz , Optogenética , Bombas de Próton/química , Prótons , Rodopsinas Microbianas/química , Espectrofotometria , Temperatura
6.
Mol Ther ; 25(11): 2546-2560, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28807567

RESUMO

The majority of inherited retinal degenerations converge on the phenotype of photoreceptor cell death. Second- and third-order neurons are spared in these diseases, making it possible to restore retinal light responses using optogenetics. Viral expression of channelrhodopsin in the third-order neurons under ubiquitous promoters was previously shown to restore visual function, albeit at light intensities above illumination safety thresholds. Here, we report (to our knowledge, for the first time) activation of macaque retinas, up to 6 months post-injection, using channelrhodopsin-Ca2+-permeable channelrhodopsin (CatCh) at safe light intensities. High-level CatCh expression was achieved due to a new promoter based on the regulatory region of the gamma-synuclein gene (SNCG) allowing strong expression in ganglion cells across species. Our promoter, in combination with clinically proven adeno-associated virus 2 (AAV2), provides CatCh expression in peri-foveolar ganglion cells responding robustly to light under the illumination safety thresholds for the human eye. On the contrary, the threshold of activation and the proportion of unresponsive cells were much higher when a ubiquitous promoter (cytomegalovirus [CMV]) was used to express CatCh. The results of our study suggest that the inclusion of optimized promoters is key in the path to clinical translation of optogenetics.


Assuntos
Channelrhodopsins/genética , Vetores Genéticos/administração & dosagem , Regiões Promotoras Genéticas , Recuperação de Função Fisiológica , Degeneração Retiniana/terapia , Animais , Channelrhodopsins/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Injeções Intravítreas , Luz , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Transdução Genética , Transgenes , Visão Ocular/fisiologia
7.
Proc Natl Acad Sci U S A ; 112(43): E5796-804, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26460012

RESUMO

The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(-) and 1,648(+) cm(-1). These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 µs (30%) and 200 µs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.


Assuntos
Evolução Biológica , Canais Iônicos/fisiologia , Luz , Água/química , Íons
8.
Proc Natl Acad Sci U S A ; 112(32): 9896-901, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216996

RESUMO

Channelrhodopsin-2 from Chlamydomonas reinhardtii is a light-gated ion channel. Over recent years, this ion channel has attracted considerable interest because of its unparalleled role in optogenetic applications. However, despite considerable efforts, an understanding of how molecular events during the photocycle, including the retinal trans-cis isomerization and the deprotonation/reprotonation of the Schiff base, are coupled to the channel-opening mechanism remains elusive. To elucidate this question, changes of conformation and configuration of several photocycle and conducting/nonconducting states need to be determined at atomic resolution. Here, we show that such data can be obtained by solid-state NMR enhanced by dynamic nuclear polarization applied to (15)N-labeled channelrhodopsin-2 carrying 14,15-(13)C2 retinal reconstituted into lipid bilayers. In its dark state, a pure all-trans retinal conformation with a stretched C14-C15 bond and a significant out-of-plane twist of the H-C14-C15-H dihedral angle could be observed. Using a combination of illumination, freezing, and thermal relaxation procedures, a number of intermediate states was generated and analyzed by DNP-enhanced solid-state NMR. Three distinct intermediates could be analyzed with high structural resolution: the early [Formula: see text] K-like state, the slowly decaying late intermediate [Formula: see text], and a third intermediate populated only under continuous illumination conditions. Our data provide novel insight into the photoactive site of channelrhodopsin-2 during the photocycle. They further show that DNP-enhanced solid-state NMR fills the gap for challenging membrane proteins between functional studies and X-ray-based structure analysis, which is required for resolving molecular mechanisms.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Luz , Espectroscopia de Ressonância Magnética , Rodopsina/metabolismo , Isótopos de Carbono , Domínio Catalítico , Escuridão , Bicamadas Lipídicas/metabolismo , Isótopos de Nitrogênio , Multimerização Proteica , Rodopsina/química
9.
Nature ; 469(7330): 407-10, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21170022

RESUMO

Spatial asymmetries in neural connectivity have an important role in creating basic building blocks of neuronal processing. A key circuit module of directionally selective (DS) retinal ganglion cells is a spatially asymmetric inhibitory input from starburst amacrine cells. It is not known how and when this circuit asymmetry is established during development. Here we photostimulate mouse starburst cells targeted with channelrhodopsin-2 (refs 6-8) while recording from a single genetically labelled type of DS cell. We follow the spatial distribution of synaptic strengths between starburst and DS cells during early postnatal development before these neurons can respond to a physiological light stimulus, and confirm connectivity by monosynaptically restricted trans-synaptic rabies viral tracing. We show that asymmetry develops rapidly over a 2-day period through an intermediate state in which random or symmetric synaptic connections have been established. The development of asymmetry involves the spatially selective reorganization of inhibitory synaptic inputs. Intriguingly, the spatial distribution of excitatory synaptic inputs from starburst cells is significantly more symmetric than that of the inhibitory inputs at the end of this developmental period. Our work demonstrates a rapid developmental switch from a symmetric to asymmetric input distribution for inhibition in the neural circuit of a principal cell.


Assuntos
Modelos Neurológicos , Percepção de Movimento/fisiologia , Movimento (Física) , Inibição Neural/fisiologia , Vias Neurais/fisiologia , Retina/fisiologia , Potenciais de Ação/fisiologia , Células Amácrinas/metabolismo , Células Amácrinas/fisiologia , Células Amácrinas/efeitos da radiação , Animais , Channelrhodopsins , Feminino , Luz , Masculino , Camundongos , Técnicas de Rastreamento Neuroanatômico , Estimulação Luminosa , Vírus da Raiva/genética , Vírus da Raiva/isolamento & purificação , Vírus da Raiva/fisiologia , Retina/citologia , Retina/crescimento & desenvolvimento , Células Ganglionares da Retina/fisiologia , Sinapses/metabolismo
10.
Plant Cell ; 25(8): 3010-21, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23964025

RESUMO

Proton-driven Suc transporters allow phloem cells of higher plants to accumulate Suc to more than 1 M, which is up to ~1000-fold higher than in the surrounding extracellular space. The carrier protein can accomplish this task only because proton and Suc transport are tightly coupled. This study provides insights into this coupling by resolving the first step in the transport cycle of the Suc transporter SUT1 from maize (Zea mays). Voltage clamp fluorometry measurements combining electrophysiological techniques with fluorescence-based methods enable the visualization of conformational changes of SUT1 expressed in Xenopus laevis oocytes. Using the Suc derivate sucralose, binding of which hinders conformational changes of SUT1, the association of protons to the carrier could be dissected from transport-associated movements of the protein. These combined approaches enabled us to resolve the binding of protons to the carrier and its interrelationship with the alternating movement of the protein. The data indicate that the rate-limiting step of the reaction cycle is determined by the accessibility of the proton binding site. This, in turn, is determined by the conformational change of the SUT1 protein, alternately exposing the binding pockets to the inward and to the outward face of the membrane.


Assuntos
Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Fluorescência , Fluorometria , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos dos fármacos , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Conformação Proteica , Relação Estrutura-Atividade , Sacarose/análogos & derivados , Sacarose/farmacologia , Xenopus laevis , Zea mays/efeitos dos fármacos
11.
Mol Ther ; 23(1): 7-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25095892

RESUMO

Most inherited retinal dystrophies display progressive photoreceptor cell degeneration leading to severe visual impairment. Optogenetic reactivation of retinal neurons mediated by adeno-associated virus (AAV) gene therapy has the potential to restore vision regardless of patient-specific mutations. The challenge for clinical translatability is to restore a vision as close to natural vision as possible, while using a surgically safe delivery route for the fragile degenerated retina. To preserve the visual processing of the inner retina, we targeted ON bipolar cells, which are still present at late stages of disease. For safe gene delivery, we used a recently engineered AAV variant that can transduce the bipolar cells after injection into the eye's easily accessible vitreous humor. We show that AAV encoding channelrhodopsin under the ON bipolar cell-specific promoter mediates long-term gene delivery restricted to ON-bipolar cells after intravitreal administration. Channelrhodopsin expression in ON bipolar cells leads to restoration of ON and OFF responses at the retinal and cortical levels. Moreover, light-induced locomotory behavior is restored in treated blind mice. Our results support the clinical relevance of a minimally invasive AAV-mediated optogenetic therapy for visual restoration.


Assuntos
Cegueira/terapia , Dependovirus/genética , Terapia Genética/métodos , Células Bipolares da Retina/metabolismo , Degeneração Retiniana/terapia , Animais , Comportamento Animal , Cegueira/genética , Cegueira/patologia , Channelrhodopsins , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Engenharia Genética , Vetores Genéticos , Injeções Intravítreas , Luz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Células Bipolares da Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Percepção Visual/genética , Corpo Vítreo
12.
Proc Natl Acad Sci U S A ; 110(14): E1273-81, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509282

RESUMO

The discovery of the light-gated ion channel channelrhodopsin (ChR) set the stage for the novel field of optogenetics, where cellular processes are controlled by light. However, the underlying molecular mechanism of light-induced cation permeation in ChR2 remains unknown. Here, we have traced the structural changes of ChR2 by time-resolved FTIR spectroscopy, complemented by functional electrophysiological measurements. We have resolved the vibrational changes associated with the open states of the channel (P(2)(390) and P(3)(520)) and characterized several proton transfer events. Analysis of the amide I vibrations suggests a transient increase in hydration of transmembrane α-helices with a t(1/2) = 60 µs, which tallies with the onset of cation permeation. Aspartate 253 accepts the proton released by the Schiff base (t(1/2) = 10 µs), with the latter being reprotonated by aspartic acid 156 (t(1/2) = 2 ms). The internal proton acceptor and donor groups, corresponding to D212 and D115 in bacteriorhodopsin, are clearly different from other microbial rhodopsins, indicating that their spatial position in the protein was relocated during evolution. Previous conclusions on the involvement of glutamic acid 90 in channel opening are ruled out by demonstrating that E90 deprotonates exclusively in the nonconductive P(4)(480) state. Our results merge into a mechanistic proposal that relates the observed proton transfer reactions and the protein conformational changes to the gating of the cation channel.


Assuntos
Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Conformação Proteica , Prótons , Channelrhodopsins , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos da radiação , Cinética , Lasers , Modelos Químicos , Fotoquímica , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Biochim Biophys Acta ; 1837(5): 614-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24060527

RESUMO

Proteorhodopsins are the most abundant retinal based photoreceptors and their phototrophic function might be relevant in marine ecosystems. Here, we describe their remarkable molecular properties with a special focus on the green absorbing variant. Its distinct features include a high pKa value of the primary proton acceptor stabilized through an interaction with a conserved histidine, a long-range interaction between the cytoplasmic EF loop and the chromophore entailing a particular mode of color tuning and a variable proton pumping vectoriality with complex voltage-dependence. The proteorhodopsin family represents a profound example for structure-function relationships. Especially the development of a biophysical understanding of green proteorhodopsin is an excellent example for the unique opportunities offered by a combined approach of advanced spectroscopic and electrophysiological methods. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.


Assuntos
Histidina/química , Prótons , Retinaldeído/química , Rodopsina/química , Sequência de Aminoácidos , Animais , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons , Luz , Modelos Moleculares , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Conformação Proteica , Proteobactérias/química , Proteobactérias/fisiologia , Retinaldeído/metabolismo , Rodopsina/metabolismo , Rodopsinas Microbianas , Relação Estrutura-Atividade , Xenopus/fisiologia
14.
J Am Chem Soc ; 137(5): 1850-61, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25584873

RESUMO

Light-gated ion permeation by channelrhodopsin-2 (ChR2) relies on the photoisomerization of the retinal chromophore and the subsequent photocycle, leading to the formation (on-gating) and decay (off-gating) of the conductive state. Here, we have analyzed the photocycle of a fast-cycling ChR2 variant (E123T mutation, also known as ChETA), by time-resolved UV/vis, step-scan FT-IR, and tunable quantum cascade laser IR spectroscopies with nanosecond resolution. Pre-gating conformational changes rise with a half-life of 200 ns, silent to UV/vis but detected by IR spectroscopy. They involve changes in the peptide backbone and in the H-bond of the side chain of the critical residue D156. Thus, the P1(500) intermediate must be separated into early and late states. Light-adapted ChR2 contains a mixture of all-trans and 13-cis retinal in a 70:30 ratio which are both photoactive. Analysis of ethylenic and fingerprint vibrations of retinal provides evidence that the 13-cis photocycle recovers in 1 ms. This recovery is faster than channel off-gating and most of the proton transfer reactions, implying that the 13-cis photocycle is of minor functional relevance for ChR2.


Assuntos
Mutação , Rodopsina/química , Rodopsina/metabolismo , Escuridão , Diterpenos , Cinética , Fotólise , Conformação Proteica , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsina/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Fatores de Tempo , Vibração
16.
Nat Methods ; 8(12): 1083-8, 2011 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22056675

RESUMO

The precise co-localization and stoichiometric expression of two different light-gated membrane proteins can vastly improve the physiological usefulness of optogenetics for the modulation of cell excitability with light. Here we present a gene-fusion strategy for the stable 1:1 expression of any two microbial rhodopsins in a single polypeptide chain. By joining the excitatory channelrhodopsin-2 with the inhibitory ion pumps halorhodopsin or bacteriorhodopsin, we demonstrate light-regulated quantitative bi-directional control of the membrane potential in HEK293 cells and neurons in vitro. We also present synergistic rhodopsin combinations of channelrhodopsin-2 with Volvox carteri channelrhodopsin-1 or slow channelrhodopsin-2 mutants, to achieve enhanced spectral or kinetic properties, respectively. Finally, we demonstrate the utility of our fusion strategy to determine ion-turnovers of as yet uncharacterized rhodopsins, exemplified for archaerhodopsin and CatCh, or to correct pump cycles, exemplified for halorhodopsin.


Assuntos
Fusão Gênica Artificial , Luz , Rodopsina/genética , Bacteriorodopsinas/análise , Bacteriorodopsinas/biossíntese , Bacteriorodopsinas/genética , Células HEK293 , Hipocampo/citologia , Humanos , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , Rodopsina/análise , Rodopsina/biossíntese
17.
J Mol Biol ; 436(5): 168447, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244766

RESUMO

Common proton pumps, e.g. HsBR and PR, transport protons out of the cell. Xenorhodopsins (XeR) were the first discovered microbial rhodopsins which come as natural inward proton pumps. In this work we combine steady-state (cryo-)FTIR and Raman spectroscopy with time-resolved IR and UV/Vis measurements to roadmap the inward proton transport of NsXeR and pinpoint the most important mechanistic features. Through the assignment of characteristic bands of the protein backbone, the retinal chromophore, the retinal Schiff base and D220, we could follow the switching processes for proton accessibility in accordance with the isomerization / switch / transfer model. The corresponding transient IR signatures suggest that the initial assignment of D220 as the proton acceptor needs to be questioned due to the temporal mismatch of the Schiff base and D220 protonation steps. The switching events in the K-L and MCP-MEC transitions are finely tuned by changes of the protein backbone and rearrangements of the Schiff base. This finely tuned mechanism is disrupted at cryogenic temperatures, being reflected in the replacement of the previously reported long-lived intermediate GS* by an actual redshifted (O-like) intermediate.


Assuntos
Bombas de Próton , Rodopsina , Luz , Bombas de Próton/química , Prótons , Rodopsina/química , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração , Análise Espectral Raman
18.
Nat Commun ; 15(1): 65, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167346

RESUMO

Rhodopsins are ubiquitous light-driven membrane proteins with diverse functions, including ion transport. Widely distributed, they are also coded in the genomes of giant viruses infecting phytoplankton where their function is not settled. Here, we examine the properties of OLPVR1 (Organic Lake Phycodnavirus Rhodopsin) and two other type 1 viral channelrhodopsins (VCR1s), and demonstrate that VCR1s accumulate exclusively intracellularly, and, upon illumination, induce calcium release from intracellular IP3-dependent stores. In vivo, this light-induced calcium release is sufficient to remote control muscle contraction in VCR1-expressing tadpoles. VCR1s natively confer light-induced Ca2+ release, suggesting a distinct mechanism for reshaping the response to light of virus-infected algae. The ability of VCR1s to photorelease calcium without altering plasma membrane electrical properties marks them as potential precursors for optogenetics tools, with potential applications in basic research and medicine.


Assuntos
Cálcio , Rodopsina , Rodopsina/genética , Rodopsina/metabolismo , Luz , Membrana Celular/metabolismo , Fitoplâncton/metabolismo , Rodopsinas Microbianas/metabolismo
19.
Biochemistry ; 52(16): 2750-63, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23586665

RESUMO

Retinylidene photoreceptors are ubiquitously present in marine protists as first documented by the identification of green proteorhodopsin (GPR). We present a detailed investigation of a rhodopsin from the protist Oxyrrhis marina (OR1) with respect to its spectroscopic properties and to its vectorial proton transport. Despite its homology to GPR, OR1's features differ markedly in its pH dependence. Protonation of the proton acceptor starts at pH below 4 and is sensitive to the ionic conditions. The mutation of a conserved histidine H62 did not influence the pK(a) value in a similar manner as in other proteorhodopsins where the charged histidine interacts with the proton acceptor forming the so-called His-Asp cluster. Mutational and pH-induced effects were further reflected in the temporal behavior upon light excitation ranging from femtoseconds to seconds. The primary photodynamics exhibits a high sensitivity to the environment of the proton acceptor D100 that are correlated to the different initial states. The mutation of the H62 does not affect photoisomerization at neutral pH. This is in agreement with NMR data indicating the absence of the His-Asp cluster. The subsequent steps in the photocycle revealed protonation reactions at the Schiff base coupled to proton pumping even at low pH. The main electrogenic steps are associated with the reprotonation of the Schiff base and internal proton donor. Hence, OR1 shows a different theme of the His-Asp organization where the low pK(a) of the proton acceptor is not dominated by this interaction, but by other electrostatic factors.


Assuntos
Dinoflagellida/química , Rodopsina/química , Rodopsina/metabolismo , Organismos Aquáticos , Ácido Aspártico/química , Ácido Aspártico/genética , Dinoflagellida/fisiologia , Histidina/genética , Concentração de Íons de Hidrogênio , Luz , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Fotoquímica , Prótons , Rodopsina/genética , Bases de Schiff/química
20.
J Am Chem Soc ; 135(18): 6968-76, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23537405

RESUMO

The primary reaction dynamics of channelrhodopsin-2 was investigated using femtosecond vis-pump/mid-IR probe spectroscopy. Due to the fast deactivation of the excited state in channelrhodopsin-2, it is possible to observe the direct impact of retinal isomerization on the protein surrounding. We show that the dominant negative band at 1665 cm(-1) tentatively assigned to an amide I vibration is developed with a time constant of 0.5 ps. Also a variety of side-chain vibrations are formed or intensified on this time scale. The comparison of the light-induced FT-IR spectra of channelrhodopsin-2 in H2O and D2O at 80 K enabled us to tentatively identify the contribution of Arg side chain(s). The subsequently observed decay of nearly the whole difference pattern has a particularly high impact on the C═C and C═N stretching vibrations of the retinal. This suggests that the underlying mechanism describes a cooling process in which the excess energy is redirected toward the retinal surrounding, e.g., the protein and functional water molecules. The pronounced protein contributions in comparison to other rhodopsins point to a very efficient energy redistribution in channelrhodopsin-2.


Assuntos
Proteínas de Transporte/metabolismo , Retina/metabolismo , Proteínas de Transporte/química , Transferência de Energia , Modelos Moleculares , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA