Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(10): 4991-5000, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850895

RESUMO

Positioning of nucleosomes along the genomic DNA is crucial for many cellular processes that include gene regulation and higher order packaging of chromatin. The question of how nucleosome-positioning information from a parent chromatin gets transferred to the daughter chromatin is highly intriguing. Accounting for experimentally known coupling between replisome movement and nucleosome dynamics, we propose a model that can obtain de novo nucleosome assembly similar to what is observed in recent experiments. Simulating nucleosome dynamics during replication, we argue that short pausing of the replication fork, associated with nucleosome disassembly, can be a event crucial for communicating nucleosome positioning information from parent to daughter. We show that the interplay of timescales between nucleosome disassembly (τp) at the replication fork and nucleosome sliding behind the fork (τs) can give rise to a rich 'phase diagram' having different inherited patterns of nucleosome organization. Our model predicts that only when τp ≥ τs the daughter chromatin can inherit nucleosome positioning of the parent.


Assuntos
Replicação do DNA/fisiologia , Modelos Biológicos , Nucleossomos/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Nucleossomos/genética
2.
J Pathol Inform ; 14: 100306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089617

RESUMO

Histopathology whole slide images (WSIs) are being widely used to develop deep learning-based diagnostic solutions, especially for precision oncology. Most of these diagnostic softwares are vulnerable to biases and impurities in the training and test data which can lead to inaccurate diagnoses. For instance, WSIs contain multiple types of tissue regions, at least some of which might not be relevant to the diagnosis. We introduce HistoROI, a robust yet lightweight deep learning-based classifier to segregate WSI into 6 broad tissue regions-epithelium, stroma, lymphocytes, adipose, artifacts, and miscellaneous. HistoROI is trained using a novel human in-the-loop and active learning paradigm that ensures variations in training data for labeling efficient generalization. HistoROI consistently performs well across multiple organs, despite being trained on only a single dataset, demonstrating strong generalization. Further, we have examined the utility of HistoROI in improving the performance of downstream deep learning-based tasks using the CAMELYON breast cancer lymph node and TCGA lung cancer datasets. For the former dataset, the area under the receiver operating characteristic curve (AUC) for metastasis versus normal tissue of a neural network trained using weakly supervised learning increased from 0.88 to 0.92 by filtering the data using HistoROI. Similarly, the AUC increased from 0.88 to 0.93 for the classification between adenocarcinoma and squamous cell carcinoma on the lung cancer dataset. We also found that the performance of the HistoROI improves upon HistoQC for artifact detection on a test dataset of 93 annotated WSIs. The limitations of the proposed model are analyzed, and potential extensions are also discussed.

3.
Phys Rev E ; 106(2-1): 024408, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36110002

RESUMO

Nucleosomes are the fundamental building blocks of chromatin that not only help in the folding of chromatin, but also in carrying epigenetic information. It is known that nucleosome sliding is responsible for dynamically organizing chromatin structure and the resulting gene regulation. Since sliding can move two neighboring nucleosomes physically close or away, can it play a role in the spreading of histone modifications? We investigate this by simulating a stochastic model that couples nucleosome dynamics with the kinetics of histone modifications. We show that the sliding of nucleosomes can affect the modification pattern as well as the time it takes to modify a given region of chromatin. Exploring different nucleosome densities and modification kinetic parameters, we show that nucleosome sliding can be important for creating histone modification domains. Our model predicts that nucleosome density coupled with sliding dynamics can create an asymmetric histone modification profile around regulatory regions. We also compute the probability distribution of modified nucleosomes and relaxation kinetics of modifications. Our predictions are comparable with known experimental results.


Assuntos
Código das Histonas , Nucleossomos , Cromatina , Montagem e Desmontagem da Cromatina , Histonas/metabolismo
4.
Phys Rev E ; 95(2-1): 022406, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297971

RESUMO

Molecular motors and cytoskeletal filaments work collectively most of the time under opposing forces. This opposing force may be due to cargo carried by motors or resistance coming from the cell membrane pressing against the cytoskeletal filaments. Some recent studies have shown that the collective maximum force (stall force) generated by multiple cytoskeletal filaments or molecular motors may not always be just a simple sum of the stall forces of the individual filaments or motors. To understand this excess or deficit in the collective force, we study a broad class of models of both cytoskeletal filaments and molecular motors. We argue that the stall force generated by a group of filaments or motors is additive, that is, the stall force of N number of filaments (motors) is N times the stall force of one filament (motor), when the system is reversible at stall. Conversely, we show that this additive property typically does not hold true when the system is irreversible at stall. We thus present a novel and unified understanding of the existing models exhibiting such non-addivity, and generalise our arguments by developing new models that demonstrate this phenomena. We also propose a quantity similar to thermodynamic efficiency to easily predict this deviation from stall-force additivity for filament and motor collectives.


Assuntos
Citoesqueleto/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Algoritmos , Animais , Fenômenos Biomecânicos , Simulação por Computador , Citoesqueleto/química , Hidrólise , Proteínas Motores Moleculares/química , Método de Monte Carlo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA