Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409221

RESUMO

Glycogen synthase kinase 3 beta (GSK-3ß) is an evolutionarily conserved serine-threonine kinase dysregulated in numerous pathologies, such as Alzheimer's disease and cancer. Even though GSK-3ß is a validated pharmacological target most of its inhibitors have two main limitations: the lack of selectivity due to the high homology that characterizes the ATP binding site of most kinases, and the toxicity that emerges from GSK-3ß complete inhibition which translates into the impairment of the plethora of pathways GSK-3ß is involved in. Starting from a 1D 19F NMR fragment screening, we set up several biophysical assays for the identification of GSK-3ß inhibitors capable of binding protein hotspots other than the ATP binding pocket or to the ATP binding pocket, but with an affinity able of competing with a reference binder. A phosphorylation activity assay on a panel of several kinases provided selectivity data that were further rationalized and corroborated by structural information on GSK-3ß in complex with the hit compounds. In this study, we identified promising fragments, inhibitors of GSK-3ß, while proposing an alternative screening workflow that allows facing the flaws that characterize the most common GSK-3ß inhibitors through the identification of selective inhibitors and/or inhibitors able to modulate GSK-3ß activity without leading to its complete inhibition.


Assuntos
Doença de Alzheimer , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Sítios de Ligação , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fosforilação
2.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328596

RESUMO

Loss-of-function mutations of the CFTR gene cause cystic fibrosis (CF) through a variety of molecular mechanisms involving altered expression, trafficking, and/or activity of the CFTR chloride channel. The most frequent mutation among CF patients, F508del, causes multiple defects that can be, however, overcome by a combination of three pharmacological agents that improve CFTR channel trafficking and gating, namely, elexacaftor, tezacaftor, and ivacaftor. This study was prompted by the evidence of two CF patients, compound heterozygous for F508del and a minimal function variant, who failed to obtain any beneficial effects following treatment with the triple drug combination. Functional studies on nasal epithelia generated in vitro from these patients confirmed the lack of response to pharmacological treatment. Molecular characterization highlighted the presence of an additional amino acid substitution, L467F, in cis with the F508del variant, demonstrating that both patients were carriers of a complex allele. Functional and biochemical assays in heterologous expression systems demonstrated that the double mutant L467F-F508del has a severely reduced activity, with negligible rescue by CFTR modulators. While further studies are needed to investigate the actual prevalence of the L467F-F508del allele, our results suggest that this complex allele should be taken into consideration as plausible cause in CF patients not responding to CFTR modulators.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Alelos , Aminofenóis , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Combinação de Medicamentos , Humanos , Indóis , Mutação , Pirazóis , Piridinas , Pirrolidinas , Quinolonas
3.
Pharmacol Res ; 172: 105816, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391933

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), in which myeloid cells sustain inflammation, take part in priming, differentiation, and reactivation of myelin-specific T cells, and cause direct myelin damage. N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a proinflammatory enzyme induced by phlogosis and overexpressed in macrophages and microglia of EAE mice. Targeting these cell populations by inhibiting NAAA may be a promising pharmacological strategy to modulate the inflammatory aspect of MS and manage disease progression. To address this goal, we used ARN16186, a small molecule specifically designed and synthesized as a pharmacological tool to inhibit NAAA. We assessed whether enzyme inhibition affected the severity of neurological symptoms and modulated immune cell infiltration into the central nervous system of EAE mice. We found that preventive chronic treatment with ARN16186 was efficacious in slowing disease progression and preserving locomotor activity in EAE mice. Furthermore, NAAA inhibition reduced the number of immune cells infiltrating the spinal cord and modulated the overactivation of NF-kB and STAT3 transcription factors, leading to less expansion of Th17 cells over the course of the disease.


Assuntos
Amidoidrolases/antagonistas & inibidores , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Locomoção/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/metabolismo , Linfócitos T/imunologia
4.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067708

RESUMO

Deletion of phenylalanine at position 508 (F508del) in the CFTR chloride channel is the most frequent mutation in cystic fibrosis (CF) patients. F508del impairs the stability and folding of the CFTR protein, thus resulting in mistrafficking and premature degradation. F508del-CFTR defects can be overcome with small molecules termed correctors. We investigated the efficacy and properties of VX-445, a newly developed corrector, which is one of the three active principles present in a drug (Trikafta®/Kaftrio®) recently approved for the treatment of CF patients with F508del mutation. We found that VX-445, particularly in combination with type I (VX-809, VX-661) and type II (corr-4a) correctors, elicits a large rescue of F508del-CFTR function. In particular, in primary bronchial epithelial cells of CF patients, the maximal rescue obtained with corrector combinations including VX-445 was close to 60-70% of CFTR function in non-CF cells. Despite this high efficacy, analysis of ubiquitylation, resistance to thermoaggregation, protein half-life, and subcellular localization revealed that corrector combinations did not fully normalize F508del-CFTR behavior. Our study indicates that it is still possible to further improve mutant CFTR rescue with the development of corrector combinations having maximal effects on mutant CFTR structural and functional properties.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Combinação de Medicamentos , Células Epiteliais/metabolismo , Humanos , Indóis/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Pirazóis/metabolismo , Piridinas/metabolismo , Pirrolidinas/metabolismo , Quinolinas/farmacologia
5.
Chemistry ; 26(43): 9459-9465, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32167602

RESUMO

Protein folding quality control in cells requires the activity of a class of proteins known as molecular chaperones. Heat shock protein-90 (Hsp90), a multidomain ATP driven molecular machine, is a prime representative of this family of proteins. Interactions between Hsp90, its co-chaperones, and client proteins have been shown to be important in facilitating the correct folding and activation of clients. Hsp90 levels and functions are elevated in tumor cells. Here, we computationally predict the regions on the native structures of clients c-Abl, c-Src, Cdk4, B-Raf and Glucocorticoid Receptor, that have the highest probability of undergoing local unfolding, despite being ordered in their native structures. Such regions represent potential ideal interaction points with the Hsp90-system. We synthesize mimics spanning these regions and confirm their interaction with partners of the Hsp90 complex (Hsp90, Cdc37 and Aha1) by Nuclear Magnetic Resonance (NMR). Designed mimics selectively disrupt the association of their respective clients with the Hsp90 machinery, leaving unrelated clients unperturbed and causing apoptosis in cancer cells. Overall, selective targeting of Hsp90 protein-protein interactions is achieved without causing indiscriminate degradation of all clients, setting the stage for the development of therapeutics based on specific chaperone:client perturbation.


Assuntos
Carcinógenos/química , Proteínas de Ciclo Celular/química , Chaperoninas/química , Proteínas de Choque Térmico HSP90/química , Chaperonas Moleculares/química , Carcinógenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Dobramento de Proteína
6.
Biotechnol Bioeng ; 117(12): 3688-3698, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32797625

RESUMO

Fructosyl peptide oxidases (FPOXs) are enzymes currently used in enzymatic assays to measure the concentration of glycated hemoglobin and albumin in blood samples, which serve as biomarkers of diabetes. However, since FPOX are unable to work directly on glycated proteins, current enzymatic assays are based on a preliminary proteolytic digestion of the target proteins. Herein, to improve the speed and costs of the enzymatic assays for diabetes testing, we applied a rational design approach to engineer a novel enzyme with a wider access tunnel to the catalytic site, using a combination of Rosetta design and molecular dynamics simulations. Our final design, L3_35A, shows a significantly wider and shorter access tunnel, resulting from the deletion of five-amino acids lining the gate structures and from a total of 35 point mutations relative to the wild-type (WT) enzyme. Indeed, upon experimental testing, our engineered enzyme shows good structural stability and maintains significant activity relative to the WT.


Assuntos
Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/genética , Domínio Catalítico , Estabilidade Enzimática
7.
Small ; 15(15): e1900147, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30891923

RESUMO

The use of graphene nanomaterials (GNMs) for biomedical applications targeted to the central nervous system is exponentially increasing, although precise information on their effects on brain cells is lacking. In this work, the molecular changes induced in cortical astrocytes by few-layer graphene (FLG) and graphene oxide (GO) flakes are addressed. The results show that exposure to FLG/GO does not affect cell viability or proliferation. However, proteomic and lipidomic analyses unveil alterations in several cellular processes, including intracellular Ca2+ ([Ca2+ ]i ) homeostasis and cholesterol metabolism, which are particularly intense in cells exposed to GO. Indeed, GO exposure impairs spontaneous and evoked astrocyte [Ca2+ ]i signals and induces a marked increase in membrane cholesterol levels. Importantly, cholesterol depletion fully rescues [Ca2+ ]i dynamics in GO-treated cells, indicating a causal relationship between these GO-mediated effects. The results indicate that exposure to GNMs alters intracellular signaling in astrocytes and may impact astrocyte-neuron interactions.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Grafite/farmacologia , Homeostase , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Homeostase/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lipidômica , Proteoma/metabolismo , Ratos Sprague-Dawley
8.
Biotechnol Appl Biochem ; 66(3): 273-280, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30588719

RESUMO

Ultraviolet (UV) light exposure is the primary factor responsible for skin photoaging, affecting all the skin layers, mainly through the production of reactive oxygen species (ROS), activation of inflammatory responses, and apoptosis. In keeping with this evidence, exogenous supplementation with dietary antioxidants has been shown to provide photoprotective benefits. Moreover, oral administration of hyaluronic acid (HA) has been proved to reduce the signs of aged skin, such as wrinkles, and increase hydration and elasticity. The combination of different biologically active substances in order to slow down the onset of skin aging could represent a promising preventive strategy against photoaging. In the present study, we investigated the effects of a dietary supplement (IALUTEC® RED), consisting of high-molecular-weight HA (HMW-HA) combined with red orange extract (ROC-Red Orange Complex® ), in human fibroblasts exposed to ultra violet light B-induced oxidative stress. Our study suggests that, in fibroblasts exposed to UVB light, IALUTEC® RED is active in decreasing both the inflammatory response and the generation of ROS, two events that are involved in skin photoaging.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Citoproteção/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Ácido Hialurônico/farmacologia , Pigmentos Biológicos/farmacologia , Raios Ultravioleta , Anti-Inflamatórios/química , Antioxidantes/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Ácido Hialurônico/química , Peso Molecular , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
9.
Nano Lett ; 18(9): 5827-5838, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30088941

RESUMO

Graphene-based materials are the focus of intense research efforts to devise novel theranostic strategies for targeting the central nervous system. In this work, we have investigated the consequences of long-term exposure of primary rat astrocytes to pristine graphene (GR) and graphene oxide (GO) flakes. We demonstrate that GR/GO interfere with a variety of intracellular processes as a result of their internalization through the endolysosomal pathway. Graphene-exposed astrocytes acquire a more differentiated morphological phenotype associated with extensive cytoskeletal rearrangements. Profound functional alterations are induced by GO internalization, including the upregulation of inward-rectifying K+ channels and of Na+-dependent glutamate uptake, which are linked to the astrocyte capacity to control the extracellular homeostasis. Interestingly, GO-pretreated astrocytes promote the functional maturation of cocultured primary neurons by inducing an increase in intrinsic excitability and in the density of GABAergic synapses. The results indicate that graphene nanomaterials profoundly affect astrocyte physiology in vitro with consequences for neuronal network activity. This work supports the view that GO-based materials could be of great interest to address pathologies of the central nervous system associated with astrocyte dysfunctions.


Assuntos
Astrócitos/citologia , Grafite/metabolismo , Neurônios/citologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comunicação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Ácido Glutâmico/metabolismo , Grafite/química , Homeostase/efeitos dos fármacos , Nanoestruturas/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Canais de Potássio/metabolismo , Ratos , Sinapses/metabolismo
10.
Angew Chem Int Ed Engl ; 58(30): 10285-10289, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31107574

RESUMO

We present a fast and sensitive nanosensor that can detect organic mercury, exploiting the combination of the catalytic and plasmonic properties of gold nanoparticles (AuNPs). The method is one-step and completely instrument-free, and has a colorimetric readout clearly detectable by simple visual inspection. The AuNPs catalyze efficient organic mercury reduction to the metallic form (Hg0 ), allowing its nucleation and amalgam formation on particle surface, with consequent aggregation-induced plasmon shift. This leads to very rapid (1 min) and specific colorimetric detection of mercury species. The achieved limit of detection (20 ppb) is compliant with current regulatory limits in food.

11.
Anal Chem ; 88(19): 9510-9517, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27583774

RESUMO

We propose a new QSRR model based on a Kernel-based partial least-squares method for predicting UPLC retention times in reversed phase mode. The model was built using a combination of classical (physicochemical and topological) and nonclassical (fingerprints) molecular descriptors of 1383 compounds, encompassing different chemical classes and structures and their accurately measured retention time values. Following a random splitting of the data set into a training and a test set, we tested the ability of the model to predict the retention time of all the compounds. The best predicted/experimental R2 value was higher than 0.86, while the best Q2 value we observed was close to 0.84. A comparison of our model with traditional and simpler MLR and PLS regression models shows that KPLS better performs in term of correlation (R2), prediction (Q2), and support to MetID peak assignment. The KPLS model succeeded in two real-life MetID tasks by correctly predicting elution order of Phase I metabolites, including isomeric monohydroxylated compounds. We also show in this paper that the model's predictive power can be extended to different gradient profiles, by simple mathematical extrapolation using a known equation, thus offering very broad flexibility. Moreover, the current study includes a deep investigation of different types of chemical descriptors used to build the structure-retention relationship.


Assuntos
Cromatografia Líquida , Modelos Químicos , Algoritmos , Análise dos Mínimos Quadrados , Análise de Componente Principal
12.
Anal Biochem ; 495: 52-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26686030

RESUMO

Nuclear magnetic resonance (NMR)-based screening has been recognized as a powerful approach for the identification and characterization of molecules interacting with pharmaceutical targets. Indeed, several NMR methods have been developed and successfully applied to many drug discovery projects. Whereas most of these approaches have targeted isolated biomolecular receptors, very few cases are reported with the screening performed in intact cells and cell extracts. Here we report the first successful application of the fluorine NMR-based assay n-FABS (n-fluorine atoms for biochemical screening) in living mammalian cells expressing the membrane protein fatty acid amide hydrolase (FAAH). This method allows the identification of both weak and potent inhibitors and the measurement of their potency in a physiological environment.


Assuntos
Amidoidrolases/análise , Ressonância Magnética Nuclear Biomolecular , Amidoidrolases/metabolismo , Benzamidas/química , Benzamidas/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Flúor/química , Células HEK293 , Humanos , Concentração Inibidora 50
13.
Nanomedicine ; 12(7): 2139-2147, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27247189

RESUMO

Nanoparticles can simultaneously deliver multiple agents to cancerous lesions enabling de facto combination therapies. Here, spherical polymeric nanoconstructs (SPNs) are loaded with anti-cancer - docetaxel (DTXL) - and anti-inflammatory - diclofenac (DICL) - molecules. In vitro, combination SPNs kill U87-MG cells twice as efficiently as DTXL SPNs, achieving a IC50 of 90.5nM at 72h. Isobologram analysis confirms a significant synergy (CI=0.56) between DTXL and DICL. In mice bearing non-orthotopic glioblastoma multiforme tumors, combination SPNs demonstrate higher inhibition in disease progression. At 70days post treatment, the survival rate of mice treated with combination SPNs is of about 70%, against a 40% for DTXL SPNs and 0% for free DTXL. Combination SPNs dramatically inhibit COX-2 expression, modulating the local inflammatory status, and increase Caspase-3 expression, which is directly related to cell death. These results suggest that the combination of anti-cancer and anti-inflammatory molecules constitutes a potent strategy for inhibiting tumor growth.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antineoplásicos/administração & dosagem , Glioblastoma/tratamento farmacológico , Nanopartículas , Animais , Caspase 3 , Morte Celular , Camundongos , Polímeros
14.
Pharmacol Res ; 86: 11-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24798679

RESUMO

N-Acylethanolamine acid amidase (NAAA) is a cysteine amidase that hydrolyzes saturated or monounsaturated fatty acid ethanolamides, such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA has been shown to exert analgesic and anti-inflammatory effects by engaging peroxisome proliferator-activated receptor-α. Like other fatty acid ethanolamides, PEA is not stored in cells, but produced on demand from cell membrane precursors, and its actions are terminated by intracellular hydrolysis by either fatty acid amide hydrolase or NAAA. Endogenous levels of PEA and OEA have been shown to decrease during inflammation. Modulation of the tissue levels of PEA by inhibition of enzymes responsible for the breakdown of this lipid mediator may represent therefore a new therapeutic strategy for the treatment of pain and inflammation. While a large number of inhibitors of fatty acid amide hydrolase have been discovered, few compounds have been reported to inhibit NAAA activity. Here, we describe the most representative NAAA inhibitors and briefly highlight their pharmacological profile. A recent study has shown that a NAAA inhibitor attenuated heat hyperalgesia and mechanical allodynia caused by local inflammation or nerve damage in animal models of pain and inflammation. This finding encourages further exploration of the pharmacology of NAAA inhibitors.


Assuntos
Amidoidrolases/antagonistas & inibidores , Analgésicos/química , Analgésicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Amidoidrolases/metabolismo , Analgésicos/uso terapêutico , Animais , Descoberta de Drogas , Inibidores Enzimáticos/uso terapêutico , Humanos , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico
15.
Pharmacol Res ; 87: 87-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24993496

RESUMO

The blood-brain barrier (BBB) is the main entry route for chemicals into the mammalian central nervous system (CNS). Two transmembrane transporters of the ATP-binding cassette (ABC) family - breast cancer resistance protein (ABCG2 in humans, Abcg2 in rodents) and P-glycoprotein (ABCB1 in humans, Abcb1 in rodents) - play a key role in mediating this process. Pharmacological and genetic evidence suggests that Abcg2 prevents CNS access to a group of highly potent and selective O-arylcarbamate fatty-acid amidohydrolase (FAAH) inhibitors, which include the compound URB937 (cyclohexylcarbamic acid 3'-carbamoyl-6-hydroxybiphenyl-3-yl ester). To define structure-activity relationships of the interaction of these molecules with Abcg2, in the present study we tested various peripherally restricted and non-restricted O-arylcarbamate FAAH inhibitors for their ability to serve as transport substrates in monolayer cultures of Madin-Darby Canine Kidney-II (MDCKII) cells over-expressing Abcg2. Surprisingly, we found that the majority of compounds tested - even those able to enter the CNS in vivo - were substrates for Abcg2 in vitro. Additional experiments in MDCKII cells overexpressing ABCB1 revealed that only those compounds that were dual substrates for ABCB1 and Abcg2 in vitro were also peripherally restricted in vivo. The extent of such restriction seems to depend upon other physicochemical features of the compounds, in particular the polar surface area. Consistent with these in vitro results, we found that URB937 readily enters the brain in dual knockout mice lacking both Abcg2 and Abcb1, whereas it is either partially or completely excluded from the brain of mice lacking either transporter alone. The results suggest that Abcg2 and Abcb1 act together to restrict the access of URB937 to the CNS.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Amidoidrolases/antagonistas & inibidores , Canabinoides/farmacologia , Carbamatos/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Amidoidrolases/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Canabinoides/química , Carbamatos/química , Cães , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Relação Estrutura-Atividade
16.
Bioorg Med Chem ; 22(17): 4998-5012, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25009002

RESUMO

We report herein the discovery, structure guided design, synthesis and biological evaluation of a novel class of JAK2 inhibitors. Optimization of the series led to the identification of the potent and orally bioavailable JAK2 inhibitor 28 (NMS-P953). Compound 28 displayed significant tumour growth inhibition in SET-2 xenograft tumour model, with a mechanism of action confirmed in vivo by typical modulation of known biomarkers, and with a favourable pharmacokinetic and safety profile.


Assuntos
Antineoplásicos/farmacologia , Janus Quinase 2/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Janus Quinase 2/metabolismo , Camundongos , Camundongos SCID , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Eur J Med Chem ; 276: 116691, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39089001

RESUMO

Although substantial advances have been obtained in the pharmacological treatment of cystic fibrosis (CF) with the approval of Kaftrio, a combination of two correctors (VX-661, VX-445) and one potentiator (VX-770), new modulators are still needed to rescue F508del and other CFTR mutants with trafficking defects. We have previously identified PP compounds based on a tricyclic core as correctors with high efficacy in the rescue of F508del-CFTR on native epithelial cells of CF patients, particularly in combination with class 1 correctors (VX-809, VX-661). Compound PP028 was found as a lead candidate for the high rescue of F508del-CFTR and used for mechanistic insight indicating that PP028 behaves as a class 3 corrector, similarly to VX-445. From the exploration of the chemical space around the hit structure, based on iterative cycles of chemical synthesis and functional testing, the class of 6,9-dihydro-5H-pyrrolo [3,2-h]quinazolines with corrector activity was discovered. Within a series of 38 analogues, two derivatives emerged as promising candidates and used for further insight to assess the mechanism of action. Both compounds, decorated with a benzensulfonylamino group at the pyrimidine moiety, were able to generate a dose-dependent increase in CFTR function, particularly in the presence of VX-809. Half-effective concentrations (EC50) were in the single digit micromolar range and decreased in the presence of VX-809 thus indicating a synergistic interaction with class 1 correctors. Synergy was also observed with corr-4a (class 2 corrector) but not with VX-445 and PP028 (class 3 correctors) indicating that the new compounds behave as class 3 correctors. These results suggest that tricyclic pyrrolo-quinazolines interact with CFTR at a site different from that of VX-809 and represent a novel class of CFTR correctors suitable for combinatorial pharmacological treatments for the basic defect in CF.

18.
J Cyst Fibros ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38789319

RESUMO

BACKGROUND: We recently demonstrated that 48 h exposure of primary human bronchial epithelial (hBE) cells, obtained from both CF (F508del homozygous) and non-CF subjects, to the triple drug combination Elexacaftor/Tezacaftor/Ivacaftor (ETI) results in a CFTR genotype-independent modulation of the de novo synthethic pathway of sphingolipids, with an accumulation of dihydroceramides (dHCer). Since dHCer are converted into ceramides (Cer) by the action of a delta-4 sphingolipid desaturase (DEGS) enzyme, we aimed to better understand this off-target effect of ETI (i.e., not related to CFTR rescue) METHODS: hBE cells, both F508del and wild-type, were cultured to create fully differentiated bronchial epithelia. We analyzed Cer and dHCer using an LC-MS based method previously developed by our lab. DEGS expression levels in differentiated hBE cells lysates were quantified by western blot analysis. RESULTS: We demonstrated that 1) dHCer accumulate in hBE with time following prolonged ETI exposure, that 2) similar inhibition occurs in wild-type primary human hepatocytes and that 3) this does not result in an alteration of DEGS expression. We then proved that 4) ETI is a direct inhibitor of DEGS, that 5) Tezacaftor is the molecule responsible for this effect, that 6) the inhibition is concentration dependent. Finally, after repeated oral administration of ETI to naïve, non-CF, mice, we observed a slight accumulation of dHCer in the brain. CONCLUSIONS: We believe that further investigations on Tezacaftor should be envisaged, particularly for the use of ETI during pregnancy, breastfeeding and in the early stages of development. DEGS dysfunction and dHCer accumulation causes impairment in the development of the nervous system, due to a derangement in myelin formation and maintenance.

19.
Chembiochem ; 14(13): 1611-9, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23918626

RESUMO

Despite the recognized importance of membrane proteins as pharmaceutical targets, the reliable identification of fragment hits that are able to bind these proteins is still a major challenge. Among different ¹9F NMR spectroscopic methods, n-fluorine atoms for biochemical screening (n-FABS) is a highly sensitive technique that has been used efficiently for fragment screening, but its application for membrane enzymes has not been reported yet. Herein, we present the first successful application of n-FABS to the discovery of novel fragment hits, targeting the membrane-bound enzyme fatty acid amide hydrolase (FAAH), using a library of fluorinated fragments generated based on the different local environment of fluorine concept. The use of the recombinant fusion protein MBP-FAAH and the design of compound 11 as a suitable novel fluorinated substrate analogue allowed n-FABS screening to be efficiently performed using a very small amount of enzyme. Notably, we have identified 19 novel fragment hits that inhibit FAAH with a median effective concentration (IC50) in the low mM-µM range. To the best of our knowledge, these results represent the first application of a ¹9F NMR fragment-based functional assay to a membrane protein.


Assuntos
Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Ressonância Magnética Nuclear Biomolecular , Animais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Flúor/química , Halogenação , Concentração Inibidora 50 , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Especificidade por Substrato
20.
PNAS Nexus ; 2(1): pgac288, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712939

RESUMO

Pharmacological modulators of the Ca2+ signaling cascade are important research tools and may translate into novel therapeutic strategies for a series of human diseases. We carried out a screening of a maximally diverse chemical library using the Ca2+-sensitive Cl- channel TMEM16A as a functional readout. We found compounds that were able to potentiate UTP-dependent TMEM16A activation. Mechanism of action of these compounds was investigated by a panel of assays that looked at intracellular Ca2+ mobilization triggered by extracellular agonists or by caged-IP3 photolysis, PIP2 breakdown by phospholipase C, and ion channel activity on nuclear membrane. One compound appears as a selective potentiator of inositol triphosphate receptor type 1 (ITPR1) with a possible application for some forms of spinocerebellar ataxia. A second compound is instead a potentiator of the P2RY2 purinergic receptor, an activity that could promote fluid secretion in dry eye and chronic obstructive respiratory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA