Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 12: e17920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247542

RESUMO

This study was performed to evaluate the effects of rye silage treated with sodium formate (Na-Fa) and lactic acid bacteria (LAB) inoculants on the ruminal fermentation characteristics, methane yield and energy balance in Hanwoo steers. Forage rye was harvested in May 2019 and ensiled without additives (control) or with either a LAB inoculant or Na-Fa. The LAB (Lactobacillus plantarum) were inoculated at 1.5 × 1010 CFU/g fresh matter, and the inoculant was sprayed onto the forage rye during wrapping at a rate of 4 L/ton of fresh rye forage. Sixteen percent of the Na-Fa solution was sprayed at a rate of approximately 6.6 L/ton. Hanwoo steers (body weight 275 ± 8.4 kg (n = 3, group 1); average body weight 360 ± 32.1 kg (n = 3, group 2)) were allocated into two pens equipped with individual feeding gates and used in duplicated 3 × 3 Latin square design. The experimental diet was fed twice daily (09:00 and 18:00) during the experimental period. Each period comprised 10 days for adaptation to the pen and 9 days for measurements in a direct respiratory chamber. The body weights of the steers were measured at the beginning and at the end of the experiment. Feces and urine were collected for 5 days after 1 day of adaptation to the chamber, methane production was measured for 2 days, and ruminal fluid was collected on the final day. In the LAB group, the ratio of acetic acid in the rumen fluid was significantly lower (p = 0.044) and the ratio of propionic acid in the rumen fluid was significantly higher (p = 0.017). Methane production per DDMI of the Na-FA treatment group was lower than that of the other groups (p = 0.052), and methane production per DNDFI of the LAB treatment group was higher than that of the other groups (p = 0.056). The use of an acid-based additive in silage production has a positive effect on net energy and has the potential to reduce enteric methane emissions in ruminants.


Assuntos
Metabolismo Energético , Fermentação , Formiatos , Metano , Rúmen , Secale , Silagem , Animais , Bovinos , Metano/biossíntese , Metano/metabolismo , Silagem/análise , Silagem/microbiologia , Formiatos/farmacologia , Formiatos/metabolismo , Rúmen/microbiologia , Rúmen/metabolismo , Masculino , Fermentação/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Lactobacillus plantarum/metabolismo , Ração Animal/análise
2.
Animals (Basel) ; 11(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34944155

RESUMO

The present study evaluated the influence of dietary protein level on growth performance, fatty acid composition, and the expression of lipid metabolic genes in intramuscular adipose tissues from 18- to 23-month-old Hanwoo steers, representing the switching point of the lean-to-fat ratio. Forty steers with an initial live weight of 486 ± 37 kg were assigned to one of two treatment groups fed either a concentrate diet with 14.5% CP and or with 17% CP for 6 months. Biopsy samples of intramuscular tissue were collected to analyze the fatty acid composition and gene expression at 23 months of age. Throughout the entire experimental period, all steers were restrained twice daily to allow individual feeding. Growth performance, blood metabolites, and carcass traits, according to ultrasonic measurements, were not affected by the experimental diets. The high-protein diet significantly increased the expression of intramuscular PPARα (p < 0.1) and LPL (p < 0.05) but did not affect genes involved in fatty acid uptake (CD36 and FABP4) nor lipogenesis (ACACA, FASN, and SCD). In addition, it downregulated intramuscular VLCAD (p < 0.01) related to lipogenesis but also GPAT1 (p = 0.001), DGAT2 (p = 0.016), and SNAP23 (p = 0.057), which are involved in fatty acid esterification and adipocyte size. Hanwoo steers fed a high-protein diet at 18-23 months of age resulted in a relatively lower lipid turnover rate than steers fed a low-protein diet, which could be responsible for shortening the feeding period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA