Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Brain Behav Immun ; 111: 298-311, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150265

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is the most prevalent neurological complication of chemotherapy for cancer, and has limited effective treatment options. Autologous conditioned serum (ACS) is an effective biologic therapy used by intra-articular injection for patients with osteoarthritis. However, ACS has not been systematically tested in the treatment of peripheral neuropathies such as CIPN. It has been generally assumed that the analgesic effect of this biologic therapy results from augmented concentrations of anti-inflammatory cytokines and growth factors. Here we report that a single intrathecal injection of human conditioned serum (hCS) produced long-lasting inhibition of paclitaxel chemotherapy-induced neuropathic pain (mechanical allodynia) in mice, without causing motor impairment. Strikingly, the analgesic effect of hCS in our experiments was maintained even 8 weeks after the treatment, compared with non-conditioned human serum (hNCS). Furthermore, the hCS transfer-induced pain relief in mice was fully recapitulated by rat or mouse CS transfer to mice of both sexes, indicating cross-species and cross-sex effectiveness. Mechanistically, CS treatment blocked the chemotherapy-induced glial reaction in the spinal cord and improved nerve conduction. Compared to NCS, CS contained significantly higher concentrations of anti-inflammatory and pro-resolving mediators, including IL-1Ra, TIMP-1, TGF-ß1, and resolvins D1/D2. Intrathecal injection of anti-TGF-ß1 and anti-Il-1Ra antibody transiently reversed the analgesic action of CS. Nanoparticle tracking analysis revealed that rat conditioned serum contained a significantly greater number of exosomes than NCS. Importantly, the removal of exosomes by high-speed centrifugation largely diminished the CS-produced pain relief, suggesting a critical involvement of small vesicles (exosomes) in the beneficial effects of CS. Together, our findings demonstrate that intrathecal CS produces a remarkable resolution of neuropathic pain mediated through a combination of small vesicles/exosomes and neuroimmune/neuroglial modulation.


Assuntos
Antineoplásicos , Exossomos , Neuralgia , Masculino , Feminino , Camundongos , Ratos , Humanos , Animais , Exossomos/metabolismo , Neuralgia/metabolismo , Paclitaxel/efeitos adversos , Hiperalgesia/metabolismo , Medula Espinal/metabolismo , Analgésicos/farmacologia , Antineoplásicos/efeitos adversos
2.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36430912

RESUMO

Inflammation is known to cause pain, and pain is of one of the cardinal signs of inflammation. Mounting evidence suggests that acute inflammation also resolves pain through specialized pro-resolving mediators (SPMs) and macrophage signaling. GPR37 is expressed by neurons and oligodendrocytes in the brain and has been implicated in multiple disorders, such as demyelination, Parkinson's disease, stroke, and cancer. Recent studies have demonstrated that GPR37 is expressed by macrophages and confers protection against infection by bacteria and parasites. Furthermore, GPR37 promotes the resolution of inflammatory pain and infection-induced pain, as the duration of pain after tissue injury and infection is prolonged in mice lacking Gpr37. Mechanistically, activation of GPR37 enhances macrophage phagocytosis, and Gpr37-deficient macrophages exhibit dysregulations of pro-inflammatory and anti-inflammatory cytokines, switching from M2- to M1-like phenotypes. We also discuss novel ligands of GPR37, including neuroprotectin D1 (NPD1), a SPM derived from docosahexaenoic acid (DHA), and bone-derived hormone osteocalcin (OCN), which can suppress oligodendrocyte differentiation and myelination. NPD1 stimulates macrophage phagocytosis via GPR37 and exhibits potent analgesic actions in various animal models of inflammatory and neuropathic pain. Targeting GPR37 may lead to novel therapeutics for treating inflammation, infection, pain, and neurological diseases.


Assuntos
Inflamação , Neuralgia , Animais , Camundongos , Inflamação/prevenção & controle , Fagocitose , Macrófagos , Anti-Inflamatórios/farmacologia , Receptores Acoplados a Proteínas G
3.
J Neurosci ; 39(35): 6848-6864, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31270160

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) remains a pressing clinical problem; however, our understanding of sexual dimorphism in CIPN remains unclear. Emerging studies indicate a sex-dimorphic role of Toll-like receptor 4 (TLR4) in driving neuropathic pain. In this study, we examined the role of TLR9 in CIPN induced by paclitaxel in WT and Tlr9 mutant mice of both sexes. Baseline pain sensitivity was not affected in either Tlr9 mutant male or female mice. Intraplantar and intrathecal injection of the TLR9 agonist ODN 1826 induced mechanical allodynia in both sexes of WT and Tlr4 KO mice but failed to do so in Tlr9 mutant mice. Moreover, Trpv1 KO or C-fiber blockade by resiniferatoxin failed to affect intraplantar ODN 1826-induced mechanical allodynia. Interestingly, the development of paclitaxel-evoked mechanical allodynia was attenuated by TLR9 antagonism or Tlr9 mutation only in male mice. Paclitaxel-induced CIPN caused macrophage infiltration to DRGs in both sexes, and this infiltration was not affected by Tlr9 mutation. Paclitaxel treatment also upregulated TNF and CXCL1 in macrophage cultures and DRG tissues in both sexes, but these changes were compromised by Tlr9 mutation in male animals. Intraplantar adoptive transfer of paclitaxel-activated macrophages evoked mechanical allodynia in both sexes, which was compromised by Tlr9 mutation or by treatment with TLR9 inhibitor only in male animals. Finally, TLR9 antagonism reduced paclitaxel-induced mechanical allodynia in female nude mice (T-cell and B-cell deficient). Together, these findings reveal sex-dimorphic macrophage TLR9 signaling in chemotherapy-induced neuropathic pain.SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect in cancer patients undergoing clinical chemotherapy treatment regimens. The role of sex dimorphism with regards to the mechanisms of CIPN and analgesia against CIPN remains unclear. Previous studies have found that the infiltration of immune cells, such as macrophages into DRGs and their subsequent activation promote CIPN. Interestingly, the contribution of microglia to CIPN appears to be limited. Here, we show that macrophage TLR9 signaling promotes CIPN in male mice only. This study suggests that pathways in macrophages may be sex-dimorphic in CIPN. Our findings provide new insights into the role of macrophage signaling mechanisms underlying sex dimorphism in CIPN, which may inspire the development of more precise and effective therapies.


Assuntos
Antineoplásicos/efeitos adversos , Hiperalgesia/metabolismo , Macrófagos/metabolismo , Neuralgia/metabolismo , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Masculino , Camundongos , Neuralgia/induzido quimicamente , Neuralgia/genética , Medição da Dor , Limiar da Dor , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Receptor Toll-Like 9/genética
4.
Nature ; 494(7435): 95-99, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23364694

RESUMO

Transmembrane channel-like (TMC) genes encode a broadly conserved family of multipass integral membrane proteins in animals. Human TMC1 and TMC2 genes are linked to human deafness and required for hair-cell mechanotransduction; however, the molecular functions of these and other TMC proteins have not been determined. Here we show that the Caenorhabditis elegans tmc-1 gene encodes a sodium sensor that functions specifically in salt taste chemosensation. tmc-1 is expressed in the ASH polymodal avoidance neurons, where it is required for salt-evoked neuronal activity and behavioural avoidance of high concentrations of NaCl. However, tmc-1 has no effect on responses to other stimuli sensed by the ASH neurons including high osmolarity and chemical repellents, indicating a specific role in salt sensation. When expressed in mammalian cell culture, C. elegans TMC-1 generates a predominantly cationic conductance activated by high extracellular sodium but not by other cations or uncharged small molecules. Thus, TMC-1 is both necessary for salt sensation in vivo and sufficient to generate a sodium-sensitive channel in vitro, identifying it as a probable ionotropic sensory receptor.


Assuntos
Caenorhabditis elegans/fisiologia , Canais Iônicos/metabolismo , Cloreto de Sódio/metabolismo , Paladar/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Células CHO , Caenorhabditis elegans/efeitos dos fármacos , Cricetinae , Condutividade Elétrica , Canais Iônicos/agonistas , Canais Iônicos/genética , Concentração Osmolar , Cloreto de Sódio/farmacologia , Paladar/efeitos dos fármacos
5.
J Neurosci ; 33(33): 13425-30, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23946399

RESUMO

It is well established that activation of NMDARs plays an essential role in spinal cord synaptic plasticity (i.e., central sensitization) and pain hypersensitivity after tissue injury. Despite prominent expression of NMDARs in DRG primary sensory neurons, the unique role of peripheral NMDARs in regulating intrinsic neuronal excitability and pain sensitivity is not well understood, in part due to the lack of selective molecular tools. To address this problem, we used Advillin-Cre driver to delete the NR1 subunit of NMDARs selectively in DRG neurons. In NR1 conditional knock-out (NR1-cKO) mice, NR1 expression is absent in DRG neurons but remains normal in spinal cord neurons; NMDA-induced currents are also eliminated in DRG neurons of these mice. Surprisingly, NR1-cKO mice displayed mechanical and thermal hypersensitivity compared with wild-type littermates. NR1-deficient DRG neurons show increased excitability, as indicated by increased frequency of action potentials, and enhanced excitatory synaptic transmission in spinal cord slices, as indicated by increased frequency of miniature EPSCs. This hyperexcitability can be reproduced by the NMDAR antagonist APV and by Ca(2+)-activated slow conductance K(+) (SK) channel blocker apamin. Furthermore, NR1-positive DRG neurons coexpress SK1/SK2 and apamin-sensitive afterhyperpolarization currents are elevated by NMDA and suppressed by APV in these neurons. Our findings reveal the hitherto unsuspected role of NMDARs in controlling the intrinsic excitability of primary sensory neurons possibly via Ca(2+)-activated SK channels. Our results also call attention to potential opposing effects of NMDAR antagonists as a treatment for pain and other neurological disorders.


Assuntos
Proteínas de Transporte/metabolismo , Hiperalgesia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Células Receptoras Sensoriais/metabolismo , Potenciais de Ação/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Gânglios Espinais/metabolismo , Camundongos , Camundongos Knockout , Dor/metabolismo , Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transmissão Sináptica/fisiologia
6.
J Clin Invest ; 134(9)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530364

RESUMO

G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here, we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs) and is selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX- and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is coexpressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the proresolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10- or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein's function. Thus, GPR37L1 in SGCs offers a therapeutic target for the protection of neuropathy and chronic pain.


Assuntos
Ácidos Docosa-Hexaenoicos , Gânglios Espinais , Neuroglia , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Gânglios Espinais/metabolismo , Homeostase , Camundongos Knockout , Camundongos Transgênicos , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/patologia , Neuroglia/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Front Immunol ; 14: 1124356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845137

RESUMO

Excessive inflammation has been implicated in autism spectrum disorder (ASD), but the underlying mechanisms have not been fully studied. SHANK3 is a synaptic scaffolding protein and mutations of SHANK3 are involved in ASD. Shank3 expression in dorsal root ganglion sensory neurons also regulates heat pain and touch. However, the role of Shank3 in the vagus system remains unknown. We induced systemic inflammation by lipopolysaccharide (LPS) and measured body temperature and serum IL-6 levels in mice. We found that homozygous and heterozygous Shank3 deficiency, but not Shank2 and Trpv1 deficiency, aggravates hypothermia, systemic inflammation (serum IL-6 levels), and sepsis mortality in mice, induced by lipopolysaccharide (LPS). Furthermore, these deficits can be recapitulated by specific deletion of Shank3 in Nav1.8-expressing sensory neurons in conditional knockout (CKO) mice or by selective knockdown of Shank3 or Trpm2 in vagal sensory neurons in nodose ganglion (NG). Mice with Shank3 deficiency have normal basal core temperature but fail to adjust body temperature after perturbations with lower or higher body temperatures or auricular vagus nerve stimulation. In situ hybridization with RNAscope revealed that Shank3 is broadly expressed by vagal sensory neurons and this expression was largely lost in Shank3 cKO mice. Mechanistically, Shank3 regulates the expression of Trpm2 in NG, as Trpm2 but not Trpv1 mRNA levels in NG were significantly reduced in Shank3 KO mice. Our findings demonstrated a novel molecular mechanism by which Shank3 in vagal sensory neurons regulates body temperature, inflammation, and sepsis. We also provided new insights into inflammation dysregulation in ASD.


Assuntos
Transtorno do Espectro Autista , Sepse , Canais de Cátion TRPM , Camundongos , Animais , Temperatura Corporal , Lipopolissacarídeos , Interleucina-6 , Células Receptoras Sensoriais , Inflamação , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética
8.
Neuron ; 111(17): 2709-2726.e9, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37348508

RESUMO

Programmed death protein 1 (PD-1) and its ligand PD-L1 constitute an immune checkpoint pathway. We report that neuronal PD-1 signaling regulates learning/memory in health and disease. Mice lacking PD-1 (encoded by Pdcd1) exhibit enhanced long-term potentiation (LTP) and memory. Intraventricular administration of anti-mouse PD-1 monoclonal antibody (RMP1-14) potentiated learning and memory. Selective deletion of PD-1 in excitatory neurons (but not microglia) also enhances LTP and memory. Traumatic brain injury (TBI) impairs learning and memory, which is rescued by Pdcd1 deletion or intraventricular PD-1 blockade. Conversely, re-expression of Pdcd1 in PD-1-deficient hippocampal neurons suppresses memory and LTP. Exogenous PD-L1 suppresses learning/memory in mice and the excitability of mouse and NHP hippocampal neurons through PD-1. Notably, neuronal activation suppresses PD-L1 secretion, and PD-L1/PD-1 signaling is distinctly regulated by learning and TBI. Thus, conditions that reduce PD-L1 levels or PD-1 signaling could promote memory in both physiological and pathological conditions.


Assuntos
Antígeno B7-H1 , Lesões Encefálicas Traumáticas , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Aprendizagem , Hipocampo/metabolismo , Anticorpos Monoclonais/metabolismo , Neurônios/metabolismo
9.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106084

RESUMO

G protein coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR and its function remains largely unknown. Here we report that GPR37L1 transcript is highly expressed compared to all known GPCRs in mouse and human dorsal root ganglia (DRGs) and selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy following diabetes and chemotherapy by streptozotocin and paclitaxel resulted in downregulations of surface GPR37L1 in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptom (mechanical allodynia), whereas overexpression of Gpr37l1 in mouse DRGs can reverse neuropathic pain. Notably, GPR37L1 is co-expressed and coupled with potassium channels in SGCs. We found striking species differences in potassium channel expression in SGCs, with predominant expression of KCNJ10 and KCNJ3 in mouse and human SGCs, respectively. GPR37L1 regulates the surface expression and function of KCNJ10 and KCNJ3. We identified the pro-resolving lipid mediator maresin 1 (MaR1) as a GPR37L1 ligand. MaR1 increases KCNJ10/KCNJ3-mediated potassium influx in SGCs via GPR37L1. MaR1 protected chemotherapy-induced suppression of KCNJ13/KCNJ10 expression and function in SGCs. Finally, genetic analysis revealed that the GPR37L1-E296K variant is associated with increased chronic pain risk by destabilizing the protein. Thus, GPR37L1 in SGCs offers a new target for neuropathy protection and pain control.

10.
J Biol Chem ; 285(25): 19362-71, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20395302

RESUMO

Temperature-sensitive transient receptor potential ion channels (thermoTRPs) expressed in epidermal keratinocytes and sensory afferents play an important role as peripheral pain detectors for our body. Many natural and synthetic compounds have been found to act on the thermoTRPs leading to altered nociception, but little is known about endogenous painful molecules activating TRPV3. Here, we show that farnesyl pyrophosphate (FPP), an intermediate metabolite in the mevalonate pathway, specifically activates TRPV3 among six thermoTRPs using Ca(2+) imaging and electrophysiology with cultured keratinocytes and TRPV3-overexpressing cells. Agonistic potencies of related compounds in the FPP metabolism were ignorable. Voltage-dependence of TRPV3 was shifted by FPP, which appears to be the activation mechanism. An intraplantar injection of FPP acutely elicits nociceptive behaviors in inflamed animals, indicating that FPP is a novel endogenous pain-producing substance via TRPV3 activation. Co-culture experiments demonstrated that this FPP-evoked signal in the keratinocytes is transmitted to sensory neurons. In addition, FPP reduced TRPV3 heat threshold resulting in heightened behavioral sensitivity to noxious heat. Taken together, our data suggest that FPP is the firstly identified endogenous TRPV3 activator that causes nociception. Our results may provide useful chemical information to elucidate TRPV3 physiology and novel pain-related metabolisms.


Assuntos
Regulação da Expressão Gênica , Dor/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Linhagem Celular , Técnicas de Cocultura , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Ligantes , Modelos Biológicos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Pele/metabolismo , Temperatura
11.
Dev Dyn ; 239(9): 2501-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20839327

RESUMO

Vacuolar ATPase (V-ATPase) is a multi-subunit enzyme that plays an important role in the acidification of a variety of intracellular compartments. ATP6V0C is subunit c of the V(0) domain that forms the proteolipid pore of the enzyme. In the present study, we investigated the neuron-specific expression of atp6v0c2, a novel isoform of the V-ATPase c-subunit, during the development of the zebrafish CNS. Zebrafish atp6v0c2 was isolated from a genome-wide analysis of the zebrafish mib(ta52b) mutant designed to identify genes differentially regulated by Notch signaling. Whole-mount in situ hybridization revealed that atp6v0c2 is expressed in a subset of CNS neurons beginning several hours after the emergence of post-mitotic neurons. The ATP6V0C2 protein is co-localized with the presynaptic vesicle marker, SV2, suggesting that it is involved in neurotransmitter storage and/or secretion in neurons. In addition, the loss-of-function experiment suggests that ATP6V0C2 is involved in the control of neuronal excitability.


Assuntos
Sistema Nervoso Central/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Sequência de Aminoácidos , Animais , Sistema Nervoso Central/anatomia & histologia , Humanos , Dados de Sequência Molecular , Neurônios/citologia , Isoformas de Proteínas/genética , Subunidades Proteicas/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Alinhamento de Sequência , Transdução de Sinais/fisiologia , ATPases Vacuolares Próton-Translocadoras/genética , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
12.
Front Immunol ; 12: 787565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950149

RESUMO

The incidence of chronic pain is especially high in women, but the underlying mechanisms remain poorly understood. Interleukin-23 (IL-23) is a pro-inflammatory cytokine and contributes to inflammatory diseases (e.g., arthritis and psoriasis) through dendritic/T cell signaling. Here we examined the IL-23 involvement in sexual dimorphism of pain, using an optogenetic approach in transgenic mice expressing channelrhodopsin-2 (ChR2) in TRPV1-positive nociceptive neurons. In situ hybridization revealed that compared to males, females had a significantly larger portion of small-sized (100-200 µm2) Trpv1+ neurons in dorsal root ganglion (DRG). Blue light stimulation of a hindpaw of transgenic mice induced intensity-dependent spontaneous pain. At the highest intensity, females showed more intense spontaneous pain than males. Intraplantar injection of IL-23 (100 ng) induced mechanical allodynia in females only but had no effects on paw edema. Furthermore, intraplantar IL-23 only potentiated blue light-induced pain in females, and intrathecal injection of IL-23 also potentiated low-dose capsaicin (500 ng) induced spontaneous pain in females but not males. IL-23 expresses in DRG macrophages of both sexes. Intrathecal injection of IL-23 induced significantly greater p38 phosphorylation (p-p38), a marker of nociceptor activation, in DRGs of female mice than male mice. In THP-1 human macrophages estrogen and chemotherapy co-application increased IL-23 secretion, and furthermore, estrogen and IL-23 co-application, but not estrogen and IL-23 alone, significantly increased IL-17A release. These findings suggest a novel role of IL-23 in macrophage signaling and female-dominant pain, including C-fiber-mediated spontaneous pain. Our study has also provided new insight into cytokine-mediated macrophage-nociceptor interactions, in a sex-dependent manner.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Interleucina-23/toxicidade , Fibras Nervosas Amielínicas/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Dor/induzido quimicamente , Canais de Cátion TRPV/metabolismo , Animais , Capsaicina , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Modelos Animais de Doenças , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Humanos , Interleucina-17/metabolismo , Luz , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Amielínicas/metabolismo , Nociceptores/metabolismo , Optogenética , Dor/genética , Dor/metabolismo , Dor/fisiopatologia , Caracteres Sexuais , Células THP-1 , Canais de Cátion TRPV/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Nat Commun ; 12(1): 4558, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315904

RESUMO

Patients with advanced stage cancers frequently suffer from severe pain as a result of bone metastasis and bone destruction, for which there is no efficacious treatment. Here, using multiple mouse models of bone cancer, we report that agonists of the immune regulator STING (stimulator of interferon genes) confer remarkable protection against cancer pain, bone destruction, and local tumor burden. Repeated systemic administration of STING agonists robustly attenuates bone cancer-induced pain and improves locomotor function. Interestingly, STING agonists produce acute pain relief through direct neuronal modulation. Additionally, STING agonists protect against local bone destruction and reduce local tumor burden through modulation of osteoclast and immune cell function in the tumor microenvironment, providing long-term cancer pain relief. Finally, these in vivo effects are dependent on host-intrinsic STING and IFN-I signaling. Overall, STING activation provides unique advantages in controlling bone cancer pain through distinct and synergistic actions on nociceptors, immune cells, and osteoclasts.


Assuntos
Neoplasias Ósseas/complicações , Dor do Câncer/etiologia , Dor do Câncer/imunologia , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Analgésicos/farmacologia , Animais , Neoplasias Ósseas/sangue , Dor do Câncer/sangue , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/patologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Proteínas de Homeodomínio/metabolismo , Hiperalgesia/complicações , Interferons/sangue , Interferons/metabolismo , Masculino , Neoplasias Mamárias Animais/complicações , Proteínas de Membrana/agonistas , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neurônios/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Xantonas/farmacologia
14.
Nat Commun ; 12(1): 1704, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731716

RESUMO

GPR37 was discovered more than two decades ago, but its biological functions remain poorly understood. Here we report a protective role of GPR37 in multiple models of infection and sepsis. Mice lacking Gpr37 exhibited increased death and/or hypothermia following challenge by lipopolysaccharide (LPS), Listeria bacteria, and the mouse malaria parasite Plasmodium berghei. Sepsis induced by LPS and Listeria in wild-type mice is protected by artesunate (ARU) and neuroprotectin D1 (NPD1), but the protective actions of these agents are lost in Gpr37-/- mice. Notably, we found that ARU binds to GPR37 in macrophages and promotes phagocytosis and clearance of pathogens. Moreover, ablation of macrophages potentiated infection, sepsis, and their sequelae, whereas adoptive transfer of NPD1- or ARU-primed macrophages reduced infection, sepsis, and pain-like behaviors. Our findings reveal physiological actions of ARU in host cells by activating macrophages and suggest that GPR37 agonists may help to treat sepsis, bacterial infections, and malaria.


Assuntos
Macrófagos/metabolismo , Dor/prevenção & controle , Receptores Acoplados a Proteínas G/metabolismo , Sepse/prevenção & controle , Transferência Adotiva , Animais , Artesunato/metabolismo , Artesunato/farmacologia , Artesunato/uso terapêutico , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Lipopolissacarídeos/toxicidade , Listeria monocytogenes/patogenicidade , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Macrófagos/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular , Dor/imunologia , Dor/mortalidade , Fagocitose/efeitos dos fármacos , Plasmodium berghei/patogenicidade , Receptores Acoplados a Proteínas G/deficiência , Sepse/imunologia , Sepse/mortalidade , Sepse/terapia
15.
Neuron ; 109(17): 2691-2706.e5, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473953

RESUMO

Although sex dimorphism is increasingly recognized as an important factor in pain, female-specific pain signaling is not well studied. Here we report that administration of IL-23 produces mechanical pain (mechanical allodynia) in female but not male mice, and chemotherapy-induced mechanical pain is selectively impaired in female mice lacking Il23 or Il23r. IL-23-induced pain is promoted by estrogen but suppressed by androgen, suggesting an involvement of sex hormones. IL-23 requires C-fiber nociceptors and TRPV1 to produce pain but does not directly activate nociceptor neurons. Notably, IL-23 requires IL-17A release from macrophages to evoke mechanical pain in females. Low-dose IL-17A directly activates nociceptors and induces mechanical pain only in females. Finally, deletion of estrogen receptor subunit α (ERα) in TRPV1+ nociceptors abolishes IL-23- and IL-17-induced pain in females. These findings demonstrate that the IL-23/IL-17A/TRPV1 axis regulates female-specific mechanical pain via neuro-immune interactions. Our study also reveals sex dimorphism at both immune and neuronal levels.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Macrófagos/metabolismo , Dor Nociceptiva/metabolismo , Nociceptores/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Interleucina-17/farmacologia , Interleucina-23/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas Amielínicas/metabolismo , Fibras Nervosas Amielínicas/fisiologia , Dor Nociceptiva/fisiopatologia , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Fatores Sexuais , Transdução de Sinais
16.
J Clin Invest ; 130(7): 3603-3620, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484460

RESUMO

Emerging immune therapy, such as with the anti-programmed cell death-1 (anti-PD-1) monoclonal antibody nivolumab, has shown efficacy in tumor suppression. Patients with terminal cancer suffer from cancer pain as a result of bone metastasis and bone destruction, but how PD-1 blockade affects bone cancer pain remains unknown. Here, we report that mice lacking Pdcd1 (Pd1-/-) demonstrated remarkable protection against bone destruction induced by femoral inoculation of Lewis lung cancer cells. Compared with WT mice, Pd1-/- mice exhibited increased baseline pain sensitivity, but the development of bone cancer pain was compromised in Pd1-/- mice. Consistently, these beneficial effects in Pd1-/- mice were recapitulated by repeated i.v. applications of nivolumab in WT mice, even though nivolumab initially increased mechanical and thermal pain. Notably, PD-1 deficiency or nivolumab treatment inhibited osteoclastogenesis without altering tumor burden. PD-L1 and CCL2 are upregulated within the local tumor microenvironment, and PD-L1 promoted RANKL-induced osteoclastogenesis through JNK activation and CCL2 secretion. Bone cancer upregulated CCR2 in primary sensory neurons, and CCR2 antagonism effectively reduced bone cancer pain. Our findings suggest that, despite a transient increase in pain sensitivity following each treatment, anti-PD-1 immunotherapy could produce long-term benefits in preventing bone destruction and alleviating bone cancer pain by suppressing osteoclastogenesis.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Carcinoma Pulmonar de Lewis , Proteínas de Neoplasias , Nivolumabe/farmacologia , Osteoclastos/metabolismo , Receptor de Morte Celular Programada 1 , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Dor do Câncer/metabolismo , Dor do Câncer/patologia , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Feminino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Osteoclastos/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo
17.
Sci Transl Med ; 12(531)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075945

RESUMO

Emerging immunotherapies with monoclonal antibodies against programmed cell death protein-1 (PD-1) have shown success in treating cancers. However, PD-1 signaling in neurons is largely unknown. We recently reported that dorsal root ganglion (DRG) primary sensory neurons express PD-1 and activation of PD-1 inhibits neuronal excitability and pain. Opioids are mainstay treatments for cancer pain, and morphine produces antinociception via mu opioid receptor (MOR). Here, we report that morphine antinociception and MOR signaling require neuronal PD-1. Morphine-induced antinociception after systemic or intrathecal injection was compromised in Pd1 -/- mice. Morphine antinociception was also diminished in wild-type mice after intravenous or intrathecal administration of nivolumab, a clinically used anti-PD-1 monoclonal antibody. In mouse models of inflammatory, neuropathic, and cancer pain, spinal morphine antinociception was compromised in Pd1 -/- mice. MOR and PD-1 are coexpressed in sensory neurons and their axons in mouse and human DRG tissues. Morphine produced antinociception by (i) suppressing calcium currents in DRG neurons, (ii) suppressing excitatory synaptic transmission, and (iii) inducing outward currents in spinal cord neurons; all of these actions were impaired by PD-1 blockade in mice. Loss of PD-1 also enhanced opioid-induced hyperalgesia and tolerance and potentiates opioid-induced microgliosis and long-term potentiation in the spinal cord in mice. Last, intrathecal infusion of nivolumab inhibited intrathecal morphine-induced antinociception in nonhuman primates. Our findings demonstrate that PD-1 regulates opioid receptor signaling in nociceptive neurons, leading to altered opioid-induced antinociception in rodents and nonhuman primates.


Assuntos
Analgésicos Opioides , Roedores , Analgésicos Opioides/farmacologia , Animais , Hiperalgesia/tratamento farmacológico , Camundongos , Morfina/farmacologia , Primatas , Medula Espinal
18.
J Cell Biochem ; 104(3): 1065-74, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18300271

RESUMO

Activated pancreatic stellate cells (PSCs) play a pivotal role in the pathogenesis of pancreatic fibrosis, but the detailed mechanism for dysregulated accumulation of extracellular matrix (ECM) remains unclear. Cultured rat PSCs become activated by profibrogenic mediators, but these mediators failed to alter the expression levels of matrix metalloproteinases (MMPs) to the endogenous tissue inhibitors of metalloproteinases (TIMPs). Here, we examined the expression of RECK, a novel membrane-anchored MMP inhibitor, in PSCs. Although RECK mRNA levels were largely unchanged, RECK protein expression was barely detected at 2, 5 days after plating PSCs, but appeared following continued in vitro culture and cell passage which result in PSC activation. When PSCs at 5 days after plating (PSCs-5d) were treated with pepstatin A, an aspartic protease inhibitor, or TGF-beta1, a profibrogenic mediator, RECK protein was detected in whole cell lysates. Conversely, Smad7 overexpression or suppression of Smad3 expression in PSCs after passage 2 (PSCs-P2) led to the loss of RECK protein expression. These findings suggest that RECK is post-translationally processed in pre-activated PSCs but protected from proteolytic degradation by TGF-beta signaling. Furthermore, collagenolytic activity of PSCs-5d was greatly reduced by TGF-beta1, whereas that of PSCs-P2 was increased by anti-RECK antibody. Increased RECK levels were also observed in cerulein-induced acute pancreatitis. Therefore, our results suggest for the first time proteolytic processing of RECK as a mechanism regulating RECK activity, and demonstrate that TGF-beta signaling in activated PSCs may promote ECM accumulation via a mechanism that preserves the protease inhibitory activity of RECK.


Assuntos
Regulação da Expressão Gênica , Glicoproteínas de Membrana/fisiologia , Pâncreas/citologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Animais , Células Cultivadas , Colágeno/química , Proteínas Ligadas por GPI , Masculino , Metaloproteinases da Matriz/metabolismo , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Pepstatinas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Supressoras de Tumor/química
19.
Biochem Biophys Res Commun ; 370(2): 295-300, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18371303

RESUMO

Menthol, cinnamaldehyde, and camphor are activators for temperature-sensitive transient receptor potential ion channels (thermoTRPs). Here we found that these three compounds inhibit the phospholipase C (PLC) signaling. P2Y purinoceptor-mediated or histamine receptor-mediated cytosolic calcium mobilization through the PLC pathway was significantly suppressed by menthol, cinnamaldehyde, and camphor. Experiments using a fluorescent pleckstrin homology domain of PLCdelta1 and IP1 accumulation assays demonstrated that direct inhibition of PLC activity occurred upon the addition of the sensory compounds. P2Y receptor-mediated PLC activation is part of the mechanism of platelet aggregation. The three compounds inhibited ADP-induced platelet aggregation. Calcium influx studies showed that thermoTRPs do not function in platelets, suggesting that the anti-aggregation effect is independent of thermoTRP activity. These results suggest that menthol, cinnamaldehyde, and camphor are able to modify PLC signaling and that those effects may lead to changes in cellular functions. This study also identifies new types of compounds that could potentially modulate platelet-related pathological events.


Assuntos
Acroleína/análogos & derivados , Cânfora/farmacologia , Mentol/farmacologia , Canais de Cátion TRPM/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Acroleína/farmacologia , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Plaquetas/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Ativação Enzimática , Humanos , Ligantes , Agregação Plaquetária/efeitos dos fármacos , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo , Canais de Cátion TRPM/efeitos dos fármacos
20.
J Clin Invest ; 128(8): 3568-3582, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010619

RESUMO

The mechanisms of pain induction by inflammation have been extensively studied. However, the mechanisms of pain resolution are not fully understood. Here, we report that GPR37, expressed by macrophages (MΦs) but not microglia, contributes to the resolution of inflammatory pain. Neuroprotectin D1 (NPD1) and prosaptide TX14 increase intracellular Ca2+ (iCa2+) levels in GPR37-transfected HEK293 cells. NPD1 and TX14 also bind to GPR37 and cause GPR37-dependent iCa2+ increases in peritoneal MΦs. Activation of GPR37 by NPD1 and TX14 triggers MΦ phagocytosis of zymosan particles via calcium signaling. Hind paw injection of pH-sensitive zymosan particles not only induces inflammatory pain and infiltration of neutrophils and MΦs, but also causes GPR37 upregulation in MΦs, phagocytosis of zymosan particles and neutrophils by MΦs in inflamed paws, and resolution of inflammatory pain in WT mice. Mice lacking Gpr37 display deficits in MΦ phagocytic activity and delayed resolution of inflammatory pain. Gpr37-deficient MΦs also show dysregulations of proinflammatory and antiinflammatory cytokines. MΦ depletion delays the resolution of inflammatory pain. Adoptive transfer of WT but not Gpr37-deficient MΦs promotes the resolution of inflammatory pain. Our findings reveal a previously unrecognized role of GPR37 in regulating MΦ phagocytosis and inflammatory pain resolution.


Assuntos
Macrófagos Peritoneais/imunologia , Dor/imunologia , Fagocitose , Receptores Acoplados a Proteínas G/imunologia , Animais , Ácidos Docosa-Hexaenoicos/genética , Ácidos Docosa-Hexaenoicos/imunologia , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/patologia , Dor/induzido quimicamente , Dor/genética , Dor/patologia , Receptores Acoplados a Proteínas G/genética , Regulação para Cima , Zimosan/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA