Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1864(4): 655-665, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28093214

RESUMO

Neurons are highly dependent on glucose. A disturbance in glucose homeostasis therefore poses a severe risk that is counteracted by activation of stress responses to limit damage and restore the energy balance. A major stress response that is activated under conditions of glucose deprivation is the unfolded protein response (UPR) that is aimed to restore proteostasis in the endoplasmic reticulum. The key signaling of the UPR involves the transient activation of a transcriptional program and an overall reduction of protein synthesis. Since the UPR is strategically positioned to sense and integrate metabolic stress signals, it is likely that - apart from its adaptive response to restore proteostasis - it also directly affects metabolic pathways. Here we investigate the direct role of the UPR in glucose homeostasis. O-GlcNAc is a post-translational modification that is highly responsive to glucose fluctuations. We find that UPR activation results in decreased O-GlcNAc modification, in line with reduced glucose metabolism. Our data indicate that UPR activation has no direct impact on the upstream processes in glucose metabolism; glucose transporter expression, glucose uptake and hexokinase activity. In contrast, prolonged UPR activation decreases glycolysis and mitochondrial metabolism. Decreased mitochondrial respiration is not accompanied by apoptosis or a structural change in mitochondria indicating that the reduction in metabolic rate upon UPR activation is a physiological non-apoptotic response. Metabolic decrease is prevented if the IRE1 pathway of the UPR is inhibited. This indicates that activation of IRE1 signaling induces a reduction in glucose metabolism, as part of an adaptive response.


Assuntos
Acetilglucosamina/metabolismo , Endorribonucleases/genética , Glucose/deficiência , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , Adaptação Fisiológica , Transporte Biológico , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicólise/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Neurônios/citologia , Fosforilação Oxidativa , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Ativação Transcricional
2.
Neurobiol Dis ; 103: 163-173, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28400135

RESUMO

Alzheimer's disease (AD) is a highly prevalent multifactorial disease for which Diabetes Mellitus (DM) is a risk factor. Abnormal phosphorylation and aggregation of tau is a key hallmark of AD. In animal models, DM induces or exacerbates the phosphorylation of tau, suggesting that DM may influence the risk at AD by directly facilitating tau pathology. Previously we reported that tau phosphorylation induced in response to metabolic stress is reversible. Since identification and understanding of early players in tau pathology is pivotal for therapeutic intervention, we here investigated the mechanism underlying tau phosphorylation in the diabetic brain and its potential for reversibility. To model DM we used streptozotocin-treatment to induce insulin deficiency in rats. Insulin depletion leads to increased tau phosphorylation in the brain and we investigated the activation status of known tau kinases and phosphatases in this model. We identified protein kinase A (PKA) as a tau kinase activated by DM in the brain. The potential relevance of this signaling pathway to AD pathogenesis is indicated by the increased level of active PKA in temporal cortex of early stage AD patients. Our data indicate that activation of PKA and tau phosphorylation are associated with insulin deficiency per se, rather than the downstream energy deprivation. In vitro studies confirm that insulin deficiency results in PKA activation and tau phosphorylation. Strikingly, both active PKA and induced tau phosphorylation are reversed upon insulin treatment in the steptozotocin animal model. Our data identify insulin deficiency as a direct trigger that induces the activity of the tau kinase PKA and results in tau phosphorylation. The reversibility upon insulin treatment underscores the potential of insulin as an early disease-modifying intervention in AD and other tauopathies.


Assuntos
Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insulina/deficiência , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação/fisiologia , Ratos , Ratos Wistar
3.
Artigo em Inglês | MEDLINE | ID: mdl-25645869

RESUMO

Recent reports suggest that carbonyl stress might affect a subset of schizophrenia patients suffering from severe symptoms. Carbonyl stress protection is achieved by the glyoxalase system consisting of two enzymes, glyoxalase 1 and 2, which in humans are encoded by the genes GLO1 and HAGH, respectively. Glyoxalase 1 and 2 catalyze the detoxification of reactive alpha-oxoaldehydes such as glyoxal and methylglyoxal, which are particularly damaging components of carbonyl stress. Here, we investigated the role of the glyoxalase system in schizophrenia by performing association analyses of common genetic variants (n=12) in GLO1 and HAGH in a Japanese sample consisting of 2012 schizophrenia patients and 2170 healthy controls. We detected a nominally significant association with schizophrenia (p=0.020) of rs11859266, a SNP in the intronic region of HAGH. However, rs11859266 did not survive multiple testing (empirical p=0.091). The variants in HAGH, rs11859266 and rs3743852, showed significant associations with schizophrenia in males at allelic and genotype levels, which remained persistent after multiple testing with the exception of rs3743852 for the genotype model. We further measured the mRNA expression of both genes in postmortem brain, but did not detect any changes in transcript expression levels between case and control samples or in sex-specific comparisons. Therefore, our findings suggest that an explanation of elevated carbonyl stress in a substantial part (reported as ~20%) of patients with schizophrenia will require the examination of a much larger cohort to detect risk alleles with weak effect size and/or other risk factors.


Assuntos
Lactoilglutationa Liase/genética , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Tioléster Hidrolases/genética , Adulto , Encéfalo/enzimologia , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Testes Genéticos , Genótipo , Humanos , Lactoilglutationa Liase/classificação , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Esquizofrenia/patologia , Fatores Sexuais , Tioléster Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA