Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(20): 5151-5162.e11, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34520724

RESUMO

The heartbeat is initiated by voltage-gated sodium channel NaV1.5, which opens rapidly and triggers the cardiac action potential; however, the structural basis for pore opening remains unknown. Here, we blocked fast inactivation with a mutation and captured the elusive open-state structure. The fast inactivation gate moves away from its receptor, allowing asymmetric opening of pore-lining S6 segments, which bend and rotate at their intracellular ends to dilate the activation gate to ∼10 Å diameter. Molecular dynamics analyses predict physiological rates of Na+ conductance. The open-state pore blocker propafenone binds in a high-affinity pose, and drug-access pathways are revealed through the open activation gate and fenestrations. Comparison with mutagenesis results provides a structural map of arrhythmia mutations that target the activation and fast inactivation gates. These results give atomic-level insights into molecular events that underlie generation of the action potential, open-state drug block, and fast inactivation of cardiac sodium channels, which initiate the heartbeat.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Arritmias Cardíacas/genética , Microscopia Crioeletrônica , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação/genética , Miocárdio , Canal de Sódio Disparado por Voltagem NAV1.5/isolamento & purificação , Canal de Sódio Disparado por Voltagem NAV1.5/ultraestrutura , Propafenona/farmacologia , Conformação Proteica , Ratos , Sódio/metabolismo , Fatores de Tempo , Água/química
2.
Proc Natl Acad Sci U S A ; 116(38): 18951-18961, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31462498

RESUMO

The hydrophobic gasket (HG), a ring of hydrophobic amino acids in the voltage-sensing domain of most voltage-gated ion channels, forms a constriction between internal and external aqueous vestibules. Cationic Arg or Lys side chains lining the S4 helix move through this "gating pore" when the channel opens. S4 movement may occur during gating of the human voltage-gated proton channel, hHV1, but proton current flows through the same pore in open channels. Here, we replaced putative HG residues with less hydrophobic residues or acidic Asp. Substitution of individuals, pairs, or all 3 HG positions did not impair proton selectivity. Evidently, the HG does not act as a secondary selectivity filter. However, 2 unexpected functions of the HG in HV1 were discovered. Mutating HG residues independently accelerated channel opening and compromised the closed state. Mutants exhibited open-closed gating, but strikingly, at negative voltages where "normal" gating produces a nonconducting closed state, the channel leaked protons. Closed-channel proton current was smaller than open-channel current and was inhibited by 10 µM Zn2+ Extreme hyperpolarization produced a deeper closed state through a weakly voltage-dependent transition. We functionally identify the HG as Val109, Phe150, Val177, and Val178, which play a critical and exclusive role in preventing H+ influx through closed channels. Molecular dynamics simulations revealed enhanced mobility of Arg208 in mutants exhibiting H+ leak. Mutation of HG residues produces gating pore currents reminiscent of several channelopathies.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Prótons , Aminoácidos , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Canais Iônicos/genética , Potenciais da Membrana , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Zinco/farmacologia
3.
Nat Commun ; 12(1): 128, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397917

RESUMO

Voltage-gated sodium (NaV) channels initiate action potentials in excitable cells, and their function is altered by potent gating-modifier toxins. The α-toxin LqhIII from the deathstalker scorpion inhibits fast inactivation of cardiac NaV1.5 channels with IC50 = 11.4 nM. Here we reveal the structure of LqhIII bound to NaV1.5 at 3.3 Å resolution by cryo-EM. LqhIII anchors on top of voltage-sensing domain IV, wedged between the S1-S2 and S3-S4 linkers, which traps the gating charges of the S4 segment in a unique intermediate-activated state stabilized by four ion-pairs. This conformational change is propagated inward to weaken binding of the fast inactivation gate and favor opening the activation gate. However, these changes do not permit Na+ permeation, revealing why LqhIII slows inactivation of NaV channels but does not open them. Our results provide important insights into the structural basis for gating-modifier toxin binding, voltage-sensor trapping, and fast inactivation of NaV channels.


Assuntos
Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Venenos de Escorpião/toxicidade , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Simulação de Dinâmica Molecular , Canal de Sódio Disparado por Voltagem NAV1.5/ultraestrutura , Conformação Proteica , Ratos , Venenos de Escorpião/química , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA