Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plants (Basel) ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891292

RESUMO

Nepeta nuda L., a notable medicinal species in the tradition of the Balkan region, is a rich source of bioactive iridoids and phenolics previously described as high-resolution taxonomical classifiers for the genus Nepeta. However, their potential in investigating intra-species differentiation is here described for the first time. The aim was to recognize the sources of natural chemical diversity and their association with the genetic variability both within and among N. nuda populations in the Central Balkans. Chemical diversity was assessed from methanol extracts and essential oils through untargeted and targeted metabolomics using state-of-the-art analytical tools, covering a broad spectrum of compounds that represent the N. nuda metabolome. We found that chemodiversity primarily resides within populations of N. nuda, and similar results were obtained at the DNA level using microsatellite markers. The low genetic and chemical differentiation of the studied N. nuda populations implies that their metabolomic profiles may be less influenced by geographic distance and variable environmental conditions within the Central Balkans, as they are under the pivotal control of their genetic backgrounds. Screening the distribution of the major bioactive compounds belonging to phenolics (phenolic acids and flavonoids) and iridoids (both aglycones and glycosylated forms), within and among N. nuda populations, is able to guarantee mass spectrometry-based tools for the selection of elite representative genotypes with practical importance. The knowledge acquired will allow us to delve deeper into the molecular background of N. nuda chemical diversity, which is the course of our further work.

2.
Antioxidants (Basel) ; 12(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36829905

RESUMO

The present study provides, for the first time, a physicochemical and biochemical characterization of the redox processes associated with the ripening of Solanum dulcamara L. (bittersweet) berries. Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) measurements of reactive oxygen species (ROS) were performed in parallel with the tissue-specific metabolic profiling of major antioxidants and assessment of antioxidant enzymes activity. Fruit transition from the mature green (MG) to ripe red (RR) stage involved changes in the qualitative and quantitative content of antioxidants and the associated cellular oxidation and peroxidation processes. The skin of bittersweet berries, which was the major source of antioxidants, exhibited the highest antioxidant potential against DPPH radicals and nitroxyl spin probe 3CP. The efficient enzymatic antioxidant system played a critical protective role against the deleterious effects of progressive oxidative stress during ripening. Here, we present the EPRI methodology to assess the redox status of fruits and to discriminate between the redox states of different tissues. Interestingly, the intracellular reoxidation of cell-permeable nitroxide probe 3CP was observed for the first time in fruits or any other plant tissue, and its intensity is herein proposed as a reliable indicator of oxidative stress during ripening. The described noninvasive EPRI technique has the potential to have broader application in the study of redox processes associated with the development, senescence, and postharvest storage of fruits, as well as other circumstances in which oxidative stress is implicated.

3.
Front Plant Sci ; 14: 1155297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968406

RESUMO

The aim of this study was to determine intra- and interspecies variation in the qualitative and quantitative composition of methanol-soluble metabolites in the leaves of three Digitalis species (D. lanata, D. ferruginea, and D. grandiflora) from the central Balkans. Despite the steady use of foxglove constituents for human health as valuable medicinal products, populations of the genus Digitalis (Plantaginaceae) have been poorly investigated to describe their genetic and phenetic variation. Following untargeted profiling using UHPLC-LTQ Orbitrap MS, by which we identified a total of 115 compounds, 16 compounds were quantified using the UHPLC(-)HESI-QqQ-MS/MS approach. In total, 55 steroid compounds, 15 phenylethanoid glycosides, 27 flavonoids, and 14 phenolic acid derivatives were identified across the samples with D. lanata and D. ferruginea showing a great similarity, while 15 compounds were characteristic only for D. grandiflora. The phytochemical composition of methanol extracts, considered here as complex phenotypes, are further examined along multiple levels of biological organization (intra- and interpopulation) and subsequently subjected to chemometric data analysis. The quantitative composition of the selected set of 16 chemomarkers belonging to the classes of cardenolides (3 compounds) and phenolics (13 compounds) pointed to considerable differences between the taxa studied. D. grandiflora and D. ferruginea were found to be richer in phenolics as compared to cardenolides, which otherwise predominate in D. lanata over other compounds. PCA revealed lanatoside C, deslanoside, hispidulin, and p-coumaric acid to be the main compounds contributing to the differences between D. lanata on one side and D. grandiflora and D. ferruginea on the other, while p-coumaric acid, hispidulin, and digoxin contribute to the diversification between D. grandiflora and D. ferruginea. However, quantitative variation in the metabolite content within species was faint with mild population diversification visible in D. grandiflora and particularly in D. ferruginea. This pointed to the highly conserved content and ratio of targeted compounds within the analyzed species, which was not severely influenced by the geographic origin or environmental conditions. The presented metabolomics approach might have, along with morphometrics and molecular genetics studies, a high information value for further elucidation of the relationships among taxa within the genus Digitalis.

4.
Planta Med ; 78(16): 1725-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22923197

RESUMO

Tanacetum parthenium produces biologically active sesquiterpene lactones (SL). Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to activate a series of genes termed the antioxidant response element (ARE). Activation of Nrf2/ARE may be useful for the treatment of neurodegenerative disease. In this study we isolated 11 SL from T. parthenium with centrifugal partition chromatography and semipreparative HPLC. Compounds were screened in vitro for their ability to activate the ARE on primary mouse cortical cultures as well as for their toxicity towards the cultures. All SL containing the α-methylene-γ-lactone moiety were able to activate the ARE and cause cellular toxicity. The structure-activity relationship among the SL isolated indicates that the guaianolides were more active and when lacking the endoperoxide functionality less toxic then the germacranolides.


Assuntos
Elementos de Resposta Antioxidante , Córtex Cerebral/efeitos dos fármacos , Lactonas/farmacologia , Sesquiterpenos de Guaiano/farmacologia , Tanacetum parthenium/química , Ativação Transcricional , Animais , Sobrevivência Celular , Células Cultivadas , Córtex Cerebral/citologia , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Lactonas/química , Lactonas/isolamento & purificação , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Cultura Primária de Células , Sesquiterpenos de Germacrano/química , Sesquiterpenos de Germacrano/isolamento & purificação , Sesquiterpenos de Germacrano/farmacologia , Sesquiterpenos de Guaiano/química , Sesquiterpenos de Guaiano/isolamento & purificação , Relação Estrutura-Atividade , Testes de Toxicidade/métodos
5.
Front Plant Sci ; 13: 914138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812935

RESUMO

Secoiridoid glucosides (SGs) are monoterpenoids derived from the iridoid cyclopentane-C-pyran skeleton with ß-D glucose linked at C1 position. Coordinated metabolic processes, such as biosynthesis and catabolism of SGs, ensure constitutive presence of these bitter tasting compounds in plant tissues, which plays a decisive role in the defense against pathogens and herbivores. These compounds are susceptible to hydrolysis mediated by enzymes ß-glucosidases, and the resulting aglycones are subsequently directed toward different metabolic pathways in plants. Function of two ß-D-glucosidases (named CeBGlu1 and CeBGlu2) from centaury (Centaurium erythraea Rafn; fam. Gentianaceae), belonging to the glycoside hydrolase 1 (GH1) family, was confirmed using in vitro assays with recombinant proteins, following their heterologous expression in E. coli and His-tag affinity purification. Although they show slightly differential substrate preference, both isoforms display high specificity toward SGs and the organ-specific distribution of transcripts was positively correlated with the content of SGs in diploid and tetraploid C. erythraea plants. Transient overexpression of CeBGlu1 and CeBGlu2 in C. erythraea leaves induced changes in metabolite profiles. The effectiveness of transgene overexpression has been altered by plant ploidy. UHPLC/DAD/(±)HESI - MS2 profiling of leaves of diploid and tetraploid C. erythraea genotypes revealed that the amounts of major SGs; sweroside, swertiamarin, and gentiopicrin was decreased in agroinfiltrated leaves, especially when CeBGlu1 and CeBGlu2 were co-expressed with transgene silencing suppressor p19. The work demonstrates that in planta metabolic engineering adopting transient overexpression of CeBGlu1 and CeBGlu2 is a suitable tool for the modulation of SGs content and glucosides/aglycones ratio, which might have substantial effects on overall phytochemistry of C. erythraea.

6.
Plants (Basel) ; 8(7)2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31337143

RESUMO

Interspecific hybridization is one of the major actuators of evolutionary changes in plants. As the result of allopolyploid hybridization, offspring may gain different ploidy levels in comparison to parental species, which can provide them instant reproductive isolation. Two tetraploid sister species, Centaurium erythraea and C. littorale, readily cross-fertilize, resulting in hybrids of various ploidy. In northern Serbia, two stable populations of a hexaploid taxon C. pannonicum have been documented. It has been proposed previously that this taxon emerged after an interspecific hybridization event between two tetraploid sister-species: C. erythraea and C. littorale subsp. compressum. The existing populations of the hybridogenic taxon, as well as neighboring populations of the two parental taxa were here characterized by both morphometrics and molecular markers (EST-SSR and trnL-F). Three leaf and two flower characteristics were found to be informative in delimitation of the parental taxa and in their discernment from hybrid individuals, the latter having intermediate values. Eight microsatellite markers were found to have good ability to distinguish studied taxa, placing C. pannonicum in closer relationship with C. erythraea. Conversely, trnL-F plastid marker nominated C. littorale subsp. compressum to be the donor of the C. pannonicum plastid DNA. Reproductive isolation of the hexaploid hybrid individuals from the parental species should be examined as the next logical step in describing the new species.

7.
Plants (Basel) ; 8(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835780

RESUMO

Centaurium erythraea Rafn produces and accumulates various biologically active specialized metabolites, including secoiridoid glucosides (SGs), which help plants to cope with unfavorable environmental conditions. Specialized metabolism is commonly modulated in a way to increase the level of protective metabolites, such as SGs. Here, we report the molecular background of the wounding-induced changes in SGs metabolism for the first time. The mechanical wounding of leaves leads to a coordinated up-regulation of SGs biosynthetic genes and corresponding JA-related transcription factors (TFs) after 24 h, which results in the increase of metabolic flux through the biosynthetic pathway and, finally, leads to the elevated accumulation of SGs 96 h upon injury. The most pronounced increase in relative expression was detected for secologanin synthase (CeSLS), highlighting this enzyme as an important point for the regulation of biosynthetic flux through the SG pathway. A similar expression pattern was observed for CeBIS1, imposing itself as the TF that is prominently involved in wound-induced regulation of SGs biosynthesis genes. The high degree of positive correlations between and among the biosynthetic genes and targeted TFs expressions indicate the transcriptional regulation of SGs biosynthesis in response to wounding with a significant role of CeBIS1, which is a known component of the jasmonic acid (JA) signaling pathway.

8.
Phytochemistry ; 140: 27-44, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28448798

RESUMO

Species within the genus Centaurium readily hybridize and polyploid complexes are often seen in natural populations. We describe phytochemical profiles of newly discovered allohexaploid hybrid, here named Centaurium pannonicum, and its parental tetraploid species C. erythraea and rare C. littorale ssp. compressum. Our aim was to examine chemodiversity of these taxa in the area of Vojvodina (North Serbia) and to perform metabolomics search for chemical classifiers which would provide high resolution discrimination of parental and hybrid individuals. In sum, UHPLC-MS/MS Orbitrap metabolomics fingerprinting revealed seventy compounds in methanol extracts. Despite the lack of qualitative chemical novelty in hybrid plants, UHPLC-qqqMS targeted metabolomics approach, aimed at three secoiridoid compounds and seventeen phenolics, pointed to considerable differences in quantitative composition of these dominant compounds among the plant taxa studied. In addition to the difference in the ploidy levels, the hybrid taxon was well distinguished from both parental species based on metabolite profiles, and, for most individuals, positioned intermediately to the parental taxa in both PCA and hierarchical clustering. After optimizing and comparing several statistical learning methods, it was possible to narrow the number of taxonomic classifiers to five (three xanthones, one secoiridoid glycoside, and one phenolic acid), while increasing the differentiation resolution. The presented metabolomics approach will certainly, along with morphometrics and molecular genetics studies, have high impact on further elucidation of complex relationships among taxa within the genus Centaurium.


Assuntos
Centaurium/química , Metaboloma , Compostos Fitoquímicos/química , Centaurium/classificação , Iridoides/química , Iridoides/isolamento & purificação , Metabolômica , Fenóis/química , Fenóis/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Poliploidia , Sérvia , Tetraploidia , Xantonas/química , Xantonas/isolamento & purificação
9.
Food Chem ; 147: 367-76, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24206732

RESUMO

Methanol extracts of aerial parts and roots of five centaury species (Centaurium erythraea, C. tenuiflorum, C. littorale ssp. uliginosum, C. pulchellum, and Schenkia spicata) were analysed for their main secondary metabolites: secoiridoid glycosides, a group of monoterpenoid compounds, and phenolics (xanthones and flavonoids), and further investigated for antioxidant capacity and antimicrobial activity. The results of ABTS, DPPH, and FRAP assays showed that above ground parts generally displayed up to 13 times higher antioxidant activity compared to roots, which should be related to higher phenolics content, especially flavonoids, in green plant organs. Secoiridoid glycosides showed no antioxidant activity. All the tested extracts demonstrated appreciative antibacterial (0.05-0.5 mg ml(-1)) and strong antifungal activity (0.1-0.6 mg ml(-1)). Our results imply that above ground parts of all centaury species studied, could be recommended for human usage as a rich source of natural antioxidants and also in food industry as strong antimicrobial agents for food preservation.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Centaurium/química , Aditivos Alimentares/farmacologia , Extratos Vegetais/farmacologia , Anti-Infecciosos/química , Antioxidantes/química , Bactérias/efeitos dos fármacos , Aditivos Alimentares/química , Fungos/efeitos dos fármacos , Extratos Vegetais/química , Raízes de Plantas/química
10.
Nat Prod Commun ; 5(10): 1525-30, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21121240

RESUMO

The main principles of C. pulchellum (Sw.) Druce, secoiridoid glycosides, have been studied as potent bioactive compounds. Here we scored their content in extracts of ten populations of this species. Antibacterial and antifungal assays of the extracts and pure secoiridoid glycosides were performed against eight bacterial strains and five fungal species. Methanol extracts from both aerial parts and roots exhibited excellent antibacterial (0.05-0.2 mg mL(-1)) and very good antifungal (0.1-2 mg mL(-1)) activity. Pure secoiridoid glycosides isolated from these extracts demonstrated very strong antibacterial (0.01-0.04 mg mL(-1)) and especially antifungal (0.001-0.1 mg mL(-1)) activity.


Assuntos
Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Centaurium/química , Glucosídeos Iridoides/isolamento & purificação , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Pironas/isolamento & purificação
11.
Food Chem Toxicol ; 47(1): 180-3, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19022328

RESUMO

The present study assayed the antimutagenic potential of Salvia officinalis (sage) in the form of tea infusion, by the somatic mutation and recombination test (SMART) on Drosophila melanogaster. The use of herbal infusions is much common in the human diet, so the aim of the present study was to estimate the antimutagenic effects of the S. officinalis tea rather than essential oils. Methyl methanesulphonate (MMS) was used as the mutagen and positive control. Several types of treatment were performed: short acute treatment with sage infusion or MMS, longer (chronic) treatment with sage solution or MMS, and two combined treatments, i.e. short treatment with sage followed by a longer treatment with MMS and vice versa. Sage infusion used in our experiments showed a clear antimutagenic effect, reducing the frequency of mutations induced by MMS. The inhibition effect of sage tea is obtained and confirmed when pre- or post-treatments with mutagen were used. The results indicate that although sage in this regime decreases the number of mutation events, it is not efficient enough in case of the 2 h sage pre-treatment. Antioxidant activity, suppression of metabolic activation, could be mechanisms through which sage or some of its components act as desmutagen.


Assuntos
Antimutagênicos/química , Antimutagênicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Salvia officinalis/química , Animais , Bebidas , Drosophila melanogaster , Técnicas Genéticas , Mutagênicos/toxicidade , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA