Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(5): 2215-2237, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36794853

RESUMO

PARP1 is a DNA-dependent ADP-Ribose transferase with ADP-ribosylation activity that is triggered by DNA breaks and non-B DNA structures to mediate their resolution. PARP1 was also recently identified as a component of the R-loop-associated protein-protein interaction network, suggesting a potential role for PARP1 in resolving this structure. R-loops are three-stranded nucleic acid structures that consist of a RNA-DNA hybrid and a displaced non-template DNA strand. R-loops are involved in crucial physiological processes but can also be a source of genome instability if persistently unresolved. In this study, we demonstrate that PARP1 binds R-loops in vitro and associates with R-loop formation sites in cells which activates its ADP-ribosylation activity. Conversely, PARP1 inhibition or genetic depletion causes an accumulation of unresolved R-loops which promotes genomic instability. Our study reveals that PARP1 is a novel sensor for R-loops and highlights that PARP1 is a suppressor of R-loop-associated genomic instability.


Assuntos
Instabilidade Genômica , Poli(ADP-Ribose) Polimerase-1 , Estruturas R-Loop , Humanos , DNA/química , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , RNA/química
2.
J Gen Intern Med ; 38(8): 1980-1983, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37020124

RESUMO

Access to new syringes can reduce the risk of HIV and hepatitis C transmission, skin and soft tissue infections, and infectious endocarditis for people who inject drugs (PWID). Syringe service programs (SSPs) and other harm reduction programs are a good source of syringes. However, they are sometimes not accessible due to limited hours, geographic barriers, and other factors. In this perspective, we argue that when PWID faces barriers to syringes physicians and other providers should prescribe, and pharmacists should dispense, syringes to decrease health risks associated with syringe re-use. This strategy is endorsed by professional organizations and is legally permissible in most states. Such prescribing has numerous benefits, including insurance coverage of the cost of syringes and the sense of legitimacy conveyed by a prescription. We discuss these benefits as well as the legality of prescribing and dispensing syringes and address practical considerations such as type of syringe, quantity, and relevant diagnostic codes, if required. In the face of an unprecedented overdose crisis with many associated health harms, we also make the case for advocacy to change state and federal laws to make access to prescribed syringes uniform, smooth, and universal as part of a suite of harm reduction efforts.


Assuntos
Overdose de Drogas , Usuários de Drogas , Infecções por HIV , Abuso de Substâncias por Via Intravenosa , Humanos , Abuso de Substâncias por Via Intravenosa/complicações , Abuso de Substâncias por Via Intravenosa/epidemiologia , Redução do Dano , Overdose de Drogas/epidemiologia , Overdose de Drogas/prevenção & controle , Atenção Primária à Saúde , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle
3.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915701

RESUMO

Purpose: ADP-ribosylation is a post-translational modification involving the transfer of one or more ADP-ribose units from NAD+ to target proteins. Dysregulation of ADP-ribosylation is implicated in neurodegenerative diseases. Here we report a novel homozygous variant in the ADPRS gene (c.545A>G, p.His182Arg) encoding the mono(ADP-ribosyl) hydrolase ARH3 found in 2 patients with childhood-onset neurodegeneration with stress-induced ataxia and seizures (CONDSIAS). Methods: Genetic testing via exome sequencing was used to identify the underlying disease cause in two siblings with developmental delay, seizures, progressive muscle weakness, and respiratory failure following an episodic course. Studies in a cell culture model uncover biochemical and cellular consequences of the identified genetic change. Results: The ARH3 H182R variant affects a highly conserved residue in the active site of ARH3, leading to protein instability, degradation, and reduced expression. ARH3 H182R additionally fails to localize to the nucleus. The combination of reduced expression and mislocalization of ARH3 H182R resulted in accumulation of mono-ADP ribosylated species in cells. Conclusions: The children's clinical course combined with the biochemical characterization of their genetic variant develops our understanding of the pathogenic mechanisms driving CONDSIAS and highlights a critical role for ARH3-regulated ADP ribosylation in nervous system integrity.

4.
Cancer Res ; 84(4): 577-597, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967363

RESUMO

RNA splicing factor (SF) gene mutations are commonly observed in patients with myeloid malignancies. Here we showed that SRSF2- and U2AF1-mutant leukemias are preferentially sensitive to PARP inhibitors (PARPi), despite being proficient in homologous recombination repair. Instead, SF-mutant leukemias exhibited R-loop accumulation that elicited an R-loop-associated PARP1 response, rendering cells dependent on PARP1 activity for survival. Consequently, PARPi induced DNA damage and cell death in SF-mutant leukemias in an R-loop-dependent manner. PARPi further increased aberrant R-loop levels, causing higher transcription-replication collisions and triggering ATR activation in SF-mutant leukemias. Ultimately, PARPi-induced DNA damage and cell death in SF-mutant leukemias could be enhanced by ATR inhibition. Finally, the level of PARP1 activity at R-loops correlated with PARPi sensitivity, suggesting that R-loop-associated PARP1 activity could be predictive of PARPi sensitivity in patients harboring SF gene mutations. This study highlights the potential of targeting different R-loop response pathways caused by spliceosome gene mutations as a therapeutic strategy for treating cancer. SIGNIFICANCE: Spliceosome-mutant leukemias accumulate R-loops and require PARP1 to resolve transcription-replication conflicts and genomic instability, providing rationale to repurpose FDA-approved PARP inhibitors for patients carrying spliceosome gene mutations.


Assuntos
Leucemia , Spliceossomos , Humanos , Spliceossomos/genética , Estruturas R-Loop , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo do DNA , Leucemia/tratamento farmacológico , Leucemia/genética , Fatores de Processamento de RNA/genética , Poli(ADP-Ribose) Polimerase-1/genética
5.
Front Oncol ; 13: 1210487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456235

RESUMO

Prostate cancer (PCa) remains the most diagnosed non-skin cancer amongst the American male population. Treatment for localized prostate cancer consists of androgen deprivation therapies (ADTs), which typically inhibit androgen production and the androgen receptor (AR). Though initially effective, a subset of patients will develop resistance to ADTs and the tumors will transition to castration-resistant prostate cancer (CRPC). Second generation hormonal therapies such as abiraterone acetate and enzalutamide are typically given to men with CRPC. However, these treatments are not curative and typically prolong survival only by a few months. Several resistance mechanisms contribute to this lack of efficacy such as the emergence of AR mutations, AR amplification, lineage plasticity, AR splice variants (AR-Vs) and increased kinase signaling. Having identified SRC kinase as a key tyrosine kinase enriched in CRPC patient tumors from our previous work, we evaluated whether inhibition of SRC kinase synergizes with enzalutamide or chemotherapy in several prostate cancer cell lines expressing variable AR isoforms. We observed robust synergy between the SRC kinase inhibitor, saracatinib, and enzalutamide, in the AR-FL+/AR-V+ CRPC cell lines, LNCaP95 and 22Rv1. We also observed that saracatinib significantly decreases AR Y534 phosphorylation, a key SRC kinase substrate residue, on AR-FL and AR-Vs, along with the AR regulome, supporting key mechanisms of synergy with enzalutamide. Lastly, we also found that the saracatinib-enzalutamide combination reduced DNA replication compared to the saracatinib-docetaxel combination, resulting in marked increased apoptosis. By elucidating this combination strategy, we provide pre-clinical data that suggests combining SRC kinase inhibitors with enzalutamide in select patients that express both AR-FL and AR-Vs.

6.
bioRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163118

RESUMO

Prostate cancer (PCa) remains the most diagnosed non-skin cancer amongst the American male population. Treatment for localized prostate cancer consists of androgen deprivation therapies (ADTs), which typically inhibit androgen production and the androgen receptor (AR). Though initially effective, a subset of patients will develop resistance to ADTs and the tumors will transition to castration-resistant prostate cancer (CRPC). Second generation hormonal therapies such as abiraterone acetate and enzalutamide are typically given to men with CRPC. However, these treatments are not curative and typically prolong survival only by a few months. Several resistance mechanisms contribute to this lack of efficacy such as the emergence of AR mutations, AR amplification, lineage plasticity, AR splice variants (AR-Vs) and increased kinase signaling. Having identified SRC kinase as a key tyrosine kinase enriched in CRPC patient tumors from our previous work, we evaluated whether inhibition of SRC kinase synergizes with enzalutamide or chemotherapy in several prostate cancer cell lines expressing variable AR isoforms. We observed robust synergy between the SRC kinase inhibitor, saracatinib, and enzalutamide, in the AR-FL+/AR-V+ CRPC cell lines, LNCaP95 and 22Rv1. We also observed that saracatinib significantly decreases AR Y 534 phosphorylation, a key SRC kinase substrate residue, on AR-FL and AR-Vs, along with the AR regulome, supporting key mechanisms of synergy with enzalutamide. Lastly, we also found that the saracatinib-enzalutamide combination reduced DNA replication compared to the saracatinib-docetaxel combination, resulting in marked increased apoptosis. By elucidating this combination strategy, we provide pre-clinical data that suggests combining SRC kinase inhibitors with enzalutamide in select patients that express both AR-FL and AR-Vs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA