RESUMO
Constructing charge-selective heterointerface with minimized defect state and matched energy level alignment is essential to reduce nonradiative recombination for achieving high-performance perovskite solar cells (PSCs). Herein, a bimolecular passivation-dipole bridge comprised of sodium phenylmethanesulfonate (SPM) and 2-phenylethylammonium iodide (PEAI) is carefully developed to regulate perovskite heterointerface. SPM passivates defect states and upshifts Fermi level (EF) of perovskite surface, and subsequent PEAI further induces additional negative dipole and causes the surface EF of perovskite pinning to negative polaron transport state of electron transport layer PCBM, which significantly promotes electron extraction at the perovskite electron-selective contact. These advantages are confirmed by a remarkably improved efficiency from 21.74% for control to 25.12% for treated PSC with excellent stability. Moreover, corresponding nonradiative recombination loss impressively diminishes from 123 to 70 meV, and charge transport-induced fill factor loss is only 3.00%. This work provides a promising approach via passivation-energetic synergy for engineering perovskite heterointerface toward highly efficient and stable PSCs.
RESUMO
We integrated optical and electrical numerical simulations to precisely investigate the effectiveness of using a pyramidal perovskite (Cs0.18FA0.82Pb(I,Br)3) nanostructured film as an example in perovskite-silicon tandem solar cells to reduce reflective losses and balance the current densities. Through our calculations, the PCE of tandem solar cells can be improved from 29.2% (the planar structures without texturing) to 36.1% in the best-performing textured tandem devices under the consistently calculated absorbed and EQE spectrum, where the predicted open-circuit voltage could reach over 2â V. These findings offer valuable theoretical insights for the advancement and optimization of perovskite-silicon tandem solar cells.
RESUMO
Nanomeshes with highly regular, permeable pores in plane, combining the exceptional porous architectures with intrinsic properties of 2D materials, have attracted increasing attention in recent years. Herein, a series of 2D ultrathin metal-organic nanomeshes with ordered mesopores is obtained by a self-assembly method, including metal phosphate and metal phosphonate. The resultant mesoporous ferric phytate nanomeshes feature unique 2D ultrathin monolayer morphologies (≈9 nm thickness), hexagonally ordered, permeable mesopores of ≈16 nm, as well as improved surface area and pore volume. Notably, the obtained ferric phytate nanomeshes can directly in situ convert into mesoporous sulfur-doped metal phosphonate nanomeshes by serving as an unprecedented reactive self-template. Furthermore, as advanced anode materials for Li-ion batteries, they deliver excellent capacity, good rate capability, and cycling performance, greatly exceeding the similar metal phosphate-based materials reported previously, resulting from their unique 2D ultrathin mesoporous structure. Therefore, the work will pave an avenue for constructing the other 2D ordered mesoporous materials, and thus offer new opportunities for them in diverse areas.
RESUMO
The precise regulation of nucleation growth and assembly of polymers is still an intriguing goal but an enormous challenge. In this study, we proposed a pre-polymerization strategy to regulate the assembly and growth of polymers by facilely controlling the concentration of polymerization initiator, and thus obtained two kinds of different nanosheet-based porphyrin polymer materials using tetrakis-5,10,15,20-(4-aminophenyl) porphyrin (TAPP) as the precursor. Notably, due to the π-π stacking and doping of TAPP during the preparation process, the obtained PTAPP-nanocube material exhibits a high intrinsic bulk conductivity reaching 1.49×10-4 â S m-1 . Profiting from the large π-conjugated structure of porphyrin units, closely stacked layer structure and excellent conductivity, the resultant porphyrin polymers, as electrode materials for lithium ion batteries, deliver high specific capacity (≈650â mAh g-1 at the current density of 100â mA g-1 ), excellent rate performance and long-cycle stability, which are among the best reports of porphyrin polymer-based electrode materials for lithium-ion batteries, to the best of our knowledge. Therefore, such a pre-polymerization approach would provide a new insight for the controllable synthesis of polymers towards custom-made architecture and function.
RESUMO
Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory. Here, two fully non-fused ring acceptors, o-4TBC-2F and m-4TBC-2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o-4TBC-2F formed planar backbones, while m-4TBC-2F displayed a twisted backbone. Additionally, the o-4TBC-2F film showed a markedly red-shifted absorption after thermal annealing, which indicated the formation of J-aggregates. For fabrication of organic solar cells (OSCs), PBDB-T was used as a donor and blended with the two acceptors. The o-4TBC-2F-based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o-4TBC-2F gave a PCE of 10.26 %, which was much higher than those based on m-4TBC-2F at 2.63 %, and it is one of the highest reported PCE values for fully non-fused ring electron acceptors.
RESUMO
Organic p-type semiconductors with tunable structures offer great opportunities for hybrid perovskite solar cells (PVSCs). We report herein two dithieno[3,2-b:2',3'-d]pyrrole (DTP) cored molecular semiconductors prepared through π-conjugation extension and an N-alkylation strategy. The as-prepared conjugated molecules exhibit a highest occupied molecular orbital (HOMO) level of -4.82â eV and a hole mobility up to 2.16×10-4 â cm2 V-1 s-1 . Together with excellent film-forming and over 99 % photoluminescence quenching efficiency on perovskite, the DTP based semiconductors work efficiently as hole-transporting materials (HTMs) for n-i-p structured PVSCs. Their dopant-free MA0.7 FA0.3 PbI2.85 Br0.15 devices exhibit a power conversion efficiency over 20 %, representing one of the highest values for un-doped molecular HTMs based PVSCs. This work demonstrates the great potential of using a DTP core in designing efficient semiconductors for dopant-free PVSCs.
RESUMO
Herein, a binary cathode interface layer (CIL) strategy based on the industrial solvent fractionated LignoBoost kraft lignin (KL) is adopted for fabrication of organic solar cells (OSCs). The uniformly distributed phenol moieties in KL enable it to easily form hydrogen bonds with commonly used CIL materials, i.e., bathocuproine (BCP) and PFN-Br, resulting in binary CILs with tunable work function (WF). This work shows that the binary CILs work well in OSCs with large KL ratio compatibility, exhibiting equivalent or even higher efficiency to the traditional CILs in state of art OSCs. In addition, the combination of KL and BCP significantly enhanced OSC stability, owing to KL blocking the reaction between BCP and nonfullerene acceptors (NFAs). This work provides a simple and effective way to achieve high-efficient OSCs with better stability and sustainability by using wood-based materials.
RESUMO
Constructing 3D/2D perovskite heterojunction is a promising approach to integrate the benefits of high efficiency and superior stability in perovskite solar cells (PSCs). However, in contrast to n-i-p architectural PSCs, the p-i-n PSCs with 3D/2D heterojunction have serious limitations in achieving high-performance as they suffer from a large energetic mismatch and electron extraction energy barrier from a 3D perovskite layer to a 2D perovskite layer, and serious nonradiative recombination at the heterojunction. Here a strategy of incorporating a thin passivating dipole layer (PDL) onto 3D perovskite and then depositing 2D perovskite without dissolving the underlying layer to form an efficient 3D/PDL/2D heterojunction is developed. It is revealed that PDL regulates the energy level alignment with the appearance of interfacial dipole and strongly interacts with 3D perovskite through covalent bonds, which eliminate the energetic mismatch, reduce the surface defects, suppress the nonradiative recombination, and thus accelerate the charge extraction at such electron-selective contact. As a result, it is reported that the 3D/PDL/2D junction p-i-n PSCs present a power conversion efficiency of 24.85% with robust stability, which is comparable to the state-of-the-art efficiency of the 3D/2D junction n-i-p devices.
RESUMO
Reducing interface nonradiative recombination is important for realizing highly efficient perovskite solar cells. In this work, we develop a synergistic bimolecular interlayer (SBI) strategy via 4-methoxyphenylphosphonic acid (MPA) and 2-phenylethylammonium iodide (PEAI) to functionalize the perovskite interface. MPA induces an in-situ chemical reaction at the perovskite surface via forming strong P-O-Pb covalent bonds that diminish the surface defect density and upshift the surface Fermi level. PEAI further creates an additional negative surface dipole so that a more n-type perovskite surface is constructed, which enhances electron extraction at the top interface. With this cooperative surface treatment, we greatly minimize interface nonradiative recombination through both enhanced defect passivation and improved energetics. The resulting p-i-n device achieves a stabilized power conversion efficiency of 25.53% and one of the smallest nonradiative recombination induced Voc loss of only 59 mV reported to date. We also obtain a certified efficiency of 25.05%. This work sheds light on the synergistic interface engineering for further improvement of perovskite solar cells.
RESUMO
Among today's nonvolatile memories, ferroelectric-based capacitors, tunnel junctions and field-effect transistors (FET) are already industrially integrated and/or intensively investigated to improve their performances. Concurrently, because of the tremendous development of artificial intelligence and big-data issues, there is an urgent need to realize high-density crossbar arrays, a prerequisite for the future of memories and emerging computing algorithms. Here, a two-terminal ferroelectric fin diode (FFD) in which a ferroelectric capacitor and a fin-like semiconductor channel are combined to share both top and bottom electrodes is designed. Such a device not only shows both digital and analog memory functionalities but is also robust and universal as it works using two very different ferroelectric materials. When compared to all current nonvolatile memories, it cumulatively demonstrates an endurance up to 1010 cycles, an ON/OFF ratio of ~102, a feature size of 30 nm, an operating energy of ~20 fJ and an operation speed of 100 ns. Beyond these superior performances, the simple two-terminal structure and their self-rectifying ratio of ~ 104 permit to consider them as new electronic building blocks for designing passive crossbar arrays which are crucial for the future in-memory computing.
RESUMO
The suboptimal carrier dynamics at the heterointerface between the perovskite and charge transport layer severely limit further performance enhancement of the state-of-the-art perovskite solar cells (PSCs). Herein, we completely map charge carrier extraction and recombination kinetics over a broad time range at buried electron-selective heterointerfaces via ultrafast transient technologies. It is revealed that the heterointerfaces carefully contain the electronic processes of free charge generation in perovskite within â¼2.8 ps, relaxation process of trap-state induced electron capturing less than â¼10.0 ps, electron extraction from perovskite to SnO2 within â¼194 ps, trap-assisted recombination within â¼2047 ps, and recombination between back-injected electrons and remaining holes within â¼8.4 ns. Moreover, we further demonstrate that the inserted poly(vinyl alcohol) (PVA) thin layer can effectively enhance the electron extraction from perovskite to SnO2, block the undesired electron back injection, and significantly suppress the nonradiative recombination, contributing to the improved device parameters of photovoltage and fill factor. This work sheds light on charge-transfer limitations at the perovskite buried heterointerface and provides an effective guide of ideal heterointerface design for promoting charge transfer and improving PSC performance.
RESUMO
Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells. However, so far the interaction mechanisms between passivating additive and perovskite are not well understood. Here, we report the atomic-scale interaction of surface passivating additive 2,2-difluoroethylammonium bromine (2FEABr) on the MAPbI3. It is found that the bulky 2FEA+ cations tend to distribute at film surface, while the Br- anions diffuse from surface into bulk. A combination of 19F, 207Pb, and 2H solid-state NMR further reveal the Br- anions' partial substitution for the I- sites, the restricted motion of partial MA+ cations, and the firmed perovskite lattices, which would improve charge transport and stability of the perovskite films. Optical spectroscopy and ultraviolet photoelectron spectroscopy demonstrate that the 2FEABr induced surface passivation and energetic modification suppress the nonradiative recombination loss. These findings enable the efficiency of the p-i-n structured PSC significantly increasing from 19.44 to 21.06%, accompanied by excellent stability. Our work further establishes more knowledge link between passivating additive and PSC performance.
RESUMO
Au nanochains with a coupled plasmonic nanostructure were first introduced into PEDOT:PSS used as a hole transport layer to fabricate mixed tin-lead PSCs. The improved electrical properties and the promotion of optical absorption contributed to a high PCE of 19.2%. Moreover, the PSCs show substantial enhancement in stability.
RESUMO
Achieving high-efficiency indium tin oxide (ITO)-free organic optoelectronic devices requires the development of high-conductivity and high-transparency materials for being used as the front electrode. Herein, sol-gel-grown zinc oxide (ZnO) films with high conductivity (460 S cm-1) and low optical absorption losses in both visible and near-infrared (NIR) spectral regions are realized utilizing the persistent photoinduced doping effect. The origin of the increased conductivity after photo-doping is ascribed to selective trapping of photogenerated holes by oxygen vacancies at the surface of the ZnO film. Then, the conductivity of the sol-gel-grown ZnO is further increased by stacking the ZnO using a newly developed sequential deposition strategy. Finally, the stacked ZnO is used as the cathode to construct ITO-free organic solar cells, photodetectors, and light emitting diodes: The devices based on ZnO outperform those based on ITO, owing to the reduced surface recombination losses at the cathode/active layer interface, and the reduced parasitic absorption losses in the electrodes of the ZnO based devices.
RESUMO
Organic solar cells (OSCs) based on an inverted architecture generally have better stability compared to those based on a standard architecture. However, the photoactive area of the inverted solar cells increases under ultraviolet (UV) or solar illuminatiom because of the too-high conductivity of the UV-illuminated zinc oxide (ZnO) interlayer. This limits the potential of the inverted solar cells for industrial applications. Herein, lithium-doped ZnO (Li-ZnO) films are employed as the cathode interlayer to construct inverted OSCs. The incorporation of Li ions is found to reduce the lateral conductivity of the UV-treated ZnO films because of the presence of Li ions, preventing the high-quality-growth of ZnO nanocrystals. This addresses the problem of having too-high conductivity in the UV-treated ZnO layer, causing the increased photoactive area of inverted solar cells. The overall performance of the solar cell is shown to be higher after the incorporation of Li ions in the ZnO layer, mainly due to the increased fill factor (FF), originating from the reduced trap-assisted recombination losses. Finally, the inverted solar cells based on the Li-ZnO interlayer are demonstrated to have a much better long-term stability, as compared to those based on ZnO. This allows the ZnO-based interlayers to be used for the mass production of organic solar cell modules.
RESUMO
Perovskite solar cells (PSCs) suffer from significant nonradiative recombination at perovskite/charge transport layer heterojunction, seriously limiting their power conversion efficiencies. Herein, solution-processed chromium multioxide (CrOx ) is judiciously selected to construct a MAPbI3 /CrOx /Spiro-OMeTAD hole-selective heterojunction. It is demonstrated that the inserted CrOx not only effectively reduces defect sites via redox shuttle at perovskite contact, but also decreases valence band maximum (VBM)-HOMO offset between perovskite and Spiro-OMeTAD. This will diminish thermionic losses for collecting holes and thus promote charge transport across the heterojunction, suppressing both defect-assisted recombination and interface carrier recombination. As a result, a remarkable improvement of 21.21% efficiency with excellent device stability is achieved compared to 18.46% of the control device, which is among the highest efficiencies for polycrystalline MAPbI3 based n-i-p planar PSCs reported to date. These findings of this work provide new insights into novel charge-selective heterojunctions for further enhancing efficiency and stability of PSCs.
RESUMO
After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years, it is becoming harder and harder to improve their power conversion efficiencies. Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells. Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells, including 2-terminal and 4-terminal structures. However, very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells. In this work, semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells, achieving a power conversion efficiency of 21.25% for the tandem cells with spin-coated perovskite layer. By using drop-coating instead of spin-coating to make the inorganic perovskite films, 4-terminal tandem cells with an efficiency of 22.34% are made. The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells. In addition, equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series. The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.
RESUMO
Three regioregular benzodithiophene-based donor-donor (D-D)-type polymers (PBDTT, PBDTT1Cl, and PBDTT2Cl) are designed, synthesized, and used as donor materials in organic solar cells (OSCs). Because of the weak intramolecular charge-transfer effect, these polymers exhibit large optical bandgaps (>2.0 eV). Among these three polymers, PBDTT1Cl exhibits more ordered and closer molecular stacking, and its devices demonstrate higher and more balanced charge mobilities and a longer charge-separated state lifetime. As a result of these comprehensive benefits, PBDTT1Cl-based OSCs give a very impressive power conversion efficiency (PCE) of 17.10% with a low nonradiative energy loss (0.19 eV). Moreover, PBDTT1Cl also possesses a low figure-of-merit value and good universality to match with different acceptors. This work provides a simply and efficient strategy to design low-cost high-performance polymer donor materials.
RESUMO
The power conversion efficiency for single-junction solar cells is limited by the Shockley-Quiesser limit. An effective approach to realize high efficiency is to develop multi-junction cells. These years have witnessed the rapid development of organic-inorganic perovskite solar cells. The excellent optoelectronic properties and tunable bandgaps of perovskite materials make them potential candidates for developing tandem solar cells, by combining with silicon, Cu(In,Ga)Se2 and organic solar cells. In this review, we present the recent progress of perovskite-based tandem solar cells, including perovskite/silicon, perovskite/perovskite, perovskite/Cu(In,Ga)Se2, and perovskite/organic cells. Finally, the challenges and opportunities for perovskite-based tandem solar cells are discussed.
RESUMO
Hole transport layer NiOx-based inverted perovskite solar cells (PSCs) have advantages of simple fabrication, low temperature, and low cost. Furthermore, the p-type NiOx material compared to that of typical n-type SnOx for PSCs has better photostability potential due to its lower photocatalytic ability. However, the NiOx layer modified by some typical materials show relatively simple functions, which limit the synthesized performance of NiOx-based inverted PSCs. Phenethyl ammonium iodide (PEAI) was introduced to modify the NiOx/perovskite interface, which can synchronously contribute to better crystallinity and stability of the perovskite layer, passivating interface defects, formed quasi-two-dimensional PEA2PbI4 perovskite layers, and superior interface contact properties. The PCEs of PSCs with the PEAI-modified NiOx/perovskite interface was obviously increased from 20.31 from 16.54% compared to that of the reference PSCs. The PSCs with PEAI modification remained 75 and 72% of the original PCE values aging for 10 h at 85 °C and 65 days in a relative humidity of 15%, which are superior to the original PCE values (47 and 51%, respectively) for the reference PSCs. Therefore, PSCs with the PEAI-modified NiOx/perovskite interface show higher PCEs and better thermal stability and moisture resistance.