Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(3): e2303894, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38031260

RESUMO

Tumor-associated macrophages (TAMs) play an essential role in tumor therapeutic resistance. Although the lethal effect of ferroptosis on tumor cells is well reported, how TAMs inhibit the effect of ferroptosis in tumors has not been clearly defined. In this study, it is demonstrated that TAM-secreted taurine suppresses ferroptosis in prostate cancer (PCa) by activating the Liver X receptor alpha/Stearoyl-Coenzyme A desaturase 1 (LXRα/SCD1) pathway. Blocking taurine intake via inhibition of taurine transporter TauT restores the sensitivity to ferroptosis in tumors. Furthermore, LXRα activates the transcription of both miR-181a-5p and its binding protein FUS to increase the recruitment of miR-181a-5p in tumor-derived extracellular vesicles (EVs). It is observed that macrophages appear to be recipient cells of the miR-181a-5p-enriched EVs. Intake of miR-181a-5p in macrophages promotes their M2 polarization and enhances the taurine export by inhibiting expression of its target gene lats1, which in turn inactivates the hippo pathway and results in a Yes-associated protein (YAP) nuclear translocation for transcriptional activation of both M2 polarization-related genes such as ARG1 and CD163 and the taurine transport gene TauT. Taken together, the findings indicate a reciprocal interaction between PCa cells and TAMs as a positive feedback-loop to repress ferroptosis in PCa, mediated by TAM-secreted taurine and tumor EV-delivered miR-181a-5p.


Assuntos
Ferroptose , MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , MicroRNAs/metabolismo , Macrófagos Associados a Tumor , Taurina/farmacologia , Neoplasias da Próstata/tratamento farmacológico
2.
J Exp Clin Cancer Res ; 43(1): 144, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745318

RESUMO

BACKGROUND: Neuroendocrine prostate cancer (NEPC) is a lethal subset of prostate cancer which is characterized by neuroendocrine differentiation and loss of androgen receptor (AR) signaling. Growing evidence reveals that cell lineage plasticity is crucial in the failure of NEPC therapies. Although studies suggest the involvement of the neural transcription factor PAX6 in drug resistance, its specific role in NEPC remains unclear. METHODS: The expression of PAX6 in NEPC was identified via bioinformatics and immunohistochemistry. CCK8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay were used to illustrate the key role of PAX6 in the progression of in vitro. ChIP and Dual-luciferase reporter assays were conducted to confirm the binding sequences of AR in the promoter region of PAX6, as well as the binding sequences of PAX6 in the promoter regions of STAT5A and MET. For in vivo validation, the xenograft model representing NEPC subtype underwent pathological analysis to verify the significant role of PAX6 in disease progression. Complementary diagnoses were established through public clinical datasets and transcriptome sequencing of specific cell lines. ATAC-seq was used to detect the chromatin accessibility of specific cell lines. RESULTS: PAX6 expression was significantly elevated in NEPC and negatively regulated by AR signaling. Activation of PAX6 in non-NEPC cells led to NE trans-differentiation, while knock-down of PAX6 in NEPC cells inhibited the development and progression of NEPC. Importantly, loss of AR resulted in an enhanced expression of PAX6, which reprogramed the lineage plasticity of prostate cancer cells to develop NE phenotypes through the MET/STAT5A signaling pathway. Through ATAC-seq, we found that a high expression level of PAX6 elicited enhanced chromatin accessibility, mainly through attenuation of H4K20me3, which typically causes chromatin silence in cancer cells. CONCLUSION: This study reveals a novel neural transcription factor PAX6 could drive NEPC progression and suggest that it might serve as a potential therapeutic target for the management of NEPC.


Assuntos
Cromatina , Fator de Transcrição PAX6 , Neoplasias da Próstata , Fator de Transcrição STAT5 , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Fenótipo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Transdução de Sinais , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
3.
Exp Neurol ; 350: 113929, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34813840

RESUMO

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is widely known for its multiple systems damage, especially neurocognitive deficits in children. Since their discovery, adenosine A2A receptors (A2ARs) have been considered as key elements in signaling pathways mediating neurodegenerative diseases such as Huntington's and Alzheimer's, as well as cognitive function regulation. Herein, we investigated A2AR role in cognitive impairment induced by chronic intermittent hypoxia (CIH). Mice were exposed to CIH 7 h every day for 4 weeks, and intraperitoneally injected with A2AR agonist CGS21680 or A2AR antagonist SCH58261 half an hour before IH exposure daily. The 8-arm radial arm maze was utilized to assess spatial memory after CIH exposures.To validate findings using pharmacology, the impact of intermittent hypoxia was investigated in A2AR knockout mice. CIH-induced memory dysfunction was manifested by increased error rates in the radial arm maze test. The behavioral changes were associated with hippocampal pathology, neuronal apoptosis, and synaptic plasticity impairment. The stimulation of adenosine A2AR exacerbated memory impairment with more serious neuropathological damage, attenuated long-term potentiation (LTP), syntaxin down-regulation, and increased BDNF protein. Moreover, apoptosis-promoting protein cleaved caspase-3 was upregulated while anti-apoptotic protein Bcl-2 was downregulated. Consistent with these findings, A2AR inhibition with SCH58261 and A2AR deletion exhibited the opposite result. Overall, these findings suggest that A2AR plays a critical role in CIH-induced impairment of learning and memory by accelerating hippocampal neuronal apoptosis and reducing synaptic plasticity. Blockade of adenosine A2A receptor alleviates cognitive dysfunction after chronic exposure to intermittent hypoxia in mice.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Transtornos Cognitivos/prevenção & controle , Hipóxia Encefálica/tratamento farmacológico , Hipóxia Encefálica/psicologia , Receptor A2A de Adenosina/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Doença Crônica , Transtornos Cognitivos/induzido quimicamente , Disfunção Cognitiva , Hipocampo/patologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Desempenho Psicomotor/efeitos dos fármacos , Pirimidinas/uso terapêutico , Receptor A2A de Adenosina/genética , Triazóis/uso terapêutico
4.
Front Genet ; 12: 705734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490037

RESUMO

A series of neurological manifestations such as intellectual disability and epilepsy are closely related to hypomagnesemia. Cyclin M2 (CNNM2) proteins, as a member of magnesium (Mg2+) transporters, were found along the basolateral membrane of distal renal tubules and involved in the reabsorption of Mg2+. Homozygous and heterozygous variants in CNNM2 reported so far were responsible for a variable degree of hypomagnesemia, several of which also showed varying degrees of neurological phenotypes such as intellectual disability and epilepsy. Here, we report a de novo heterozygous CNNM2 variant (c.2228C > T, p.Ser743Phe) in a Chinese patient, which is the variant located in the cyclic nucleotide monophosphate-binding homology (CNBH) domain of CNNM2 proteins. The patient presented with mild intellectual disability and refractory epilepsy but without hypomagnesemia. Thus, we reviewed the literature and analyzed the phenotypes related to CNNM2 variants, and then concluded that the number of variant alleles and the changed protein domains correlates with the severity of the disease, and speculated that the CNBH domain of CNNM2 possibly plays a limited role in Mg2+ transport but a significant role in brain development. Furthermore, it can be speculated that neurological phenotypes such as intellectual disability and seizures can be purely caused by CNNM2 variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA