Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7928): 747-753, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002568

RESUMO

Animals and fungi have radically distinct morphologies, yet both evolved within the same eukaryotic supergroup: Opisthokonta1,2. Here we reconstructed the trajectory of genetic changes that accompanied the origin of Metazoa and Fungi since the divergence of Opisthokonta with a dataset that includes four novel genomes from crucial positions in the Opisthokonta phylogeny. We show that animals arose only after the accumulation of genes functionally important for their multicellularity, a tendency that began in the pre-metazoan ancestors and later accelerated in the metazoan root. By contrast, the pre-fungal ancestors experienced net losses of most functional categories, including those gained in the path to Metazoa. On a broad-scale functional level, fungal genomes contain a higher proportion of metabolic genes and diverged less from the last common ancestor of Opisthokonta than did the gene repertoires of Metazoa. Metazoa and Fungi also show differences regarding gene gain mechanisms. Gene fusions are more prevalent in Metazoa, whereas a larger fraction of gene gains were detected as horizontal gene transfers in Fungi and protists, in agreement with the long-standing idea that transfers would be less relevant in Metazoa due to germline isolation3-5. Together, our results indicate that animals and fungi evolved under two contrasting trajectories of genetic change that predated the origin of both groups. The gradual establishment of two clearly differentiated genomic contexts thus set the stage for the emergence of Metazoa and Fungi.


Assuntos
Evolução Molecular , Fungos , Genoma , Genômica , Filogenia , Animais , Fungos/genética , Transferência Genética Horizontal , Genes , Genoma/genética , Genoma Fúngico/genética , Metabolismo/genética
2.
Bioessays ; 46(4): e2300169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38344836

RESUMO

In this paper, we redefine the target of evolutionary explanations by proposing the "evosystem" as an alternative to populations, lineages and species. Evosystems account for changes in the distribution of heritable variation within individual Darwinian populations (evolution by natural selection, drift, or constructive neutral evolution), but also for changes in the networks of interactions within or between Darwinian populations and changes in the abiotic environment (whether these changes are caused by the organic entities or not). The evosystem can thereby become a centerpiece for a redefined evolutionary science, that is, evolutionary studies, that apprehends through a single framework the variety of evolutionary processes that lie at various scales. To illustrate the importance of this broadened perspective on evolution, we use a case of antimicrobial resistance evolution: the spread of the blaNDM gene family and the related resistance to carbapenem antibiotics observed globally, and show how evolutionary studies can contribute to answering contemporary socially relevant challenges.


Assuntos
Evolução Biológica , Seleção Genética
3.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929912

RESUMO

Gram-positive Firmicutes bacteria and their mobile genetic elements (plasmids and bacteriophages) encode peptide-based quorum-sensing systems (QSSs) that orchestrate behavioral transitions as a function of population densities. In their simplest form, termed "RRNPP", these QSSs are composed of two adjacent genes: a communication propeptide and its cognate intracellular receptor. RRNPP QSSs notably regulate social/competitive behaviors such as virulence or biofilm formation in bacteria, conjugation in plasmids, or lysogeny in temperate bacteriophages. However, the genetic diversity and the prevalence of these communication systems, together with the breadth of behaviors they control, remain largely underappreciated. To better assess the impact of density dependency on microbial community dynamics and evolution, we developed the RRNPP_detector software, which predicts known and novel RRNPP QSSs in chromosomes, plasmids, and bacteriophages of Firmicutes. Applying RRNPP_detector against available complete genomes of viruses and Firmicutes, we identified a rich repertoire of RRNPP QSSs from 11 already known subfamilies and 21 novel high-confidence candidate subfamilies distributed across a vast diversity of taxa. The analysis of high-confidence RRNPP subfamilies notably revealed 14 subfamilies shared between chromosomes/plasmids/phages, 181 plasmids and 82 phages encoding multiple communication systems, phage-encoded QSSs predicted to dynamically modulate bacterial behaviors, and 196 candidate biosynthetic gene clusters under density-dependent regulation. Overall, our work enhances the field of quorum-sensing research and reveals novel insights into the coevolution of gram-positive bacteria and their mobile genetic elements.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Lisogenia , Plasmídeos , Bactérias/genética , Percepção de Quorum/genética
4.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649176

RESUMO

Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.


Assuntos
Envelhecimento , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Humanos , Envelhecimento/genética , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H1N1/genética , Proteínas Virais/genética , Coevolução Biológica , Senescência Celular
5.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34792602

RESUMO

All genomes include gene families with very limited taxonomic distributions that potentially represent new genes and innovations in protein-coding sequence, raising questions on the origins of such genes. Some of these genes are hypothesized to have formed de novo, from noncoding sequences, and recent work has begun to elucidate the processes by which de novo gene formation can occur. A special case of de novo gene formation, overprinting, describes the origin of new genes from noncoding alternative reading frames of existing open reading frames (ORFs). We argue that additionally, out-of-frame gene fission/fusion events of alternative reading frames of ORFs and out-of-frame lateral gene transfers could contribute to the origin of new gene families. To demonstrate this, we developed an original pattern-search in sequence similarity networks, enhancing the use of these graphs, commonly used to detect in-frame remodeled genes. We applied this approach to gene families in 524 complete genomes of Escherichia coli. We identified 767 gene families whose evolutionary history likely included at least one out-of-frame remodeling event. These genes with out-of-frame components represent ∼2.5% of all genes in the E. coli pangenome, suggesting that alternative reading frames of existing ORFs can contribute to a significant proportion of de novo genes in bacteria.


Assuntos
Escherichia coli , Evolução Molecular , Escherichia coli/genética , Fases de Leitura Aberta , Filogenia , Fases de Leitura
6.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34662394

RESUMO

How, when, and why do organisms, their tissues, and their cells age remain challenging issues, although researchers have identified multiple mechanistic causes of aging, and three major evolutionary theories have been developed to unravel the ultimate causes of organismal aging. A central hypothesis of these theories is that the strength of natural selection decreases with age. However, empirical evidence on when, why, and how organisms age is phylogenetically limited, especially in natural populations. Here, we developed generic comparisons of gene co-expression networks that quantify and dissect the heterogeneity of gene co-expression in conspecific individuals from different age-classes to provide topological evidence about some mechanical and fundamental causes of organismal aging. We applied this approach to investigate the complexity of some proximal and ultimate causes of aging phenotypes in a natural population of the greater mouse-eared bat Myotis myotis, a remarkably long-lived species given its body size and metabolic rate, with available longitudinal blood transcriptomes. M. myotis gene co-expression networks become increasingly fragmented with age, suggesting an erosion of the strength of natural selection and a general dysregulation of gene co-expression in aging bats. However, selective pressures remain sufficiently strong to allow successive emergence of homogeneous age-specific gene co-expression patterns, for at least 7 years. Thus, older individuals from long-lived species appear to sit at an evolutionary crossroad: as they age, they experience both a decrease in the strength of natural selection and a targeted selection for very specific biological processes, further inviting to refine a central hypothesis in evolutionary aging theories.


Assuntos
Evolução Biológica , Seleção Genética , Transcriptoma
7.
Bioessays ; 43(1): e2000077, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165956

RESUMO

Recently, Doolittle and Inkpen formulated a thought provoking theory, asserting that evolution by natural selection was responsible for the sideways evolution of two radically different kinds of selective units (also called Domains). The former entities, termed singers, correspond to the usual objects studied by evolutionary biologists (gene, genomes, individuals, species, etc.), whereas the later, termed songs, correspond to re-produced biological and ecosystemic functions, processes, information, and memes. Singers perform songs through selected patterns of interactions, meaning that a wealth of critical phenomena might receive novel evolutionary explanations. However, this theory did not provide an empirical approach to study evolution in such a broadened context. Here, we show that analyzing songs and singers, using patterns of interaction networks as a common ontology for both, offers a novel, actionable, inclusive and mathematical way to analyze not only the re-production but also the evolution and fitness of biological and ecosystemic interconnected processes.


Assuntos
Canto , Evolução Biológica , Ecossistema , Humanos , Seleção Genética
8.
Mol Biol Evol ; 35(1): 252-255, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092069

RESUMO

Genes evolve by point mutations, but also by shuffling, fusion, and fission of genetic fragments. Therefore, similarity between two sequences can be due to common ancestry producing homology, and/or partial sharing of component fragments. Disentangling these processes is especially challenging in large molecular data sets, because of computational time. In this article, we present CompositeSearch, a memory-efficient, fast, and scalable method to detect composite gene families in large data sets (typically in the range of several million sequences). CompositeSearch generalizes the use of similarity networks to detect composite and component gene families with a greater recall, accuracy, and precision than recent programs (FusedTriplets and MosaicFinder). Moreover, CompositeSearch provides user-friendly quality descriptions regarding the distribution and primary sequence conservation of these gene families allowing critical biological analyses of these data.


Assuntos
Biologia Computacional/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Sequência Conservada/genética , Evolução Molecular , Filogenia , Análise de Sequência de DNA/estatística & dados numéricos , Software
9.
Mol Biol Evol ; 35(4): 899-913, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29346651

RESUMO

Extensive microbial gene flows affect how we understand virology, microbiology, medical sciences, genetic modification, and evolutionary biology. Phylogenies only provide a narrow view of these gene flows: plasmids and viruses, lacking core genes, cannot be attached to cellular life on phylogenetic trees. Yet viruses and plasmids have a major impact on cellular evolution, affecting both the gene content and the dynamics of microbial communities. Using bipartite graphs that connect up to 149,000 clusters of homologous genes with 8,217 related and unrelated genomes, we can in particular show patterns of gene sharing that do not map neatly with the organismal phylogeny. Homologous genes are recycled by lateral gene transfer, and multiple copies of homologous genes are carried by otherwise completely unrelated (and possibly nested) genomes, that is, viruses, plasmids and prokaryotes. When a homologous gene is present on at least one plasmid or virus and at least one chromosome, a process of "gene externalization," affected by a postprocessed selected functional bias, takes place, especially in Bacteria. Bipartite graphs give us a view of vertical and horizontal gene flow beyond classic taxonomy on a single very large, analytically tractable, graph that goes beyond the cellular Web of Life.


Assuntos
Transferência Genética Horizontal , Genes Microbianos , Fluxo Gênico , Plasmídeos/genética , Vírus/genética
10.
Proc Natl Acad Sci U S A ; 113(13): 3579-84, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976593

RESUMO

The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the "recycling" of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance.


Assuntos
Evolução Molecular , Plastídeos/genética , Proteínas/genética , Simbiose/genética , Eucariotos/genética , Fusão Gênica , Genoma de Planta , Modelos Genéticos , Família Multigênica , Oxirredução , Fotossíntese/genética , Filogenia , Plantas/genética , Homologia de Sequência de Aminoácidos
11.
BMC Biol ; 16(1): 56, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843714

RESUMO

The classic Darwinian theory and the Synthetic evolutionary theory and their linear models, while invaluable to study the origins and evolution of species, are not primarily designed to model the evolution of organisations, typically that of ecosystems, nor that of processes. How could evolutionary theory better explain the evolution of biological complexity and diversity? Inclusive network-based analyses of dynamic systems could retrace interactions between (related or unrelated) components. This theoretical shift from a Tree of Life to a Dynamic Interaction Network of Life, which is supported by diverse molecular, cellular, microbiological, organismal, ecological and evolutionary studies, would further unify evolutionary biology.


Assuntos
Biodiversidade , Evolução Biológica , Animais , Humanos
12.
BMC Biol ; 16(1): 30, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534719

RESUMO

BACKGROUND: Eukaryotes evolved from the symbiotic association of at least two prokaryotic partners, and a good deal is known about the timings, mechanisms, and dynamics of these evolutionary steps. Recently, it was shown that a new class of nuclear genes, symbiogenetic genes (S-genes), was formed concomitant with endosymbiosis and the subsequent evolution of eukaryotic photosynthetic lineages. Understanding their origins and contributions to eukaryogenesis would provide insights into the ways in which cellular complexity has evolved. RESULTS: Here, we show that chimeric nuclear genes (S-genes), built from prokaryotic domains, are critical for explaining the leap forward in cellular complexity achieved during eukaryogenesis. A total of 282 S-gene families contributed solutions to many of the challenges faced by early eukaryotes, including enhancing the informational machinery, processing spliceosomal introns, tackling genotoxicity within the cell, and ensuring functional protein interactions in a larger, more compartmentalized cell. For hundreds of S-genes, we confirmed the origins of their components (bacterial, archaeal, or generally prokaryotic) by maximum likelihood phylogenies. Remarkably, Bacteria contributed nine-fold more S-genes than Archaea, including a two-fold greater contribution to informational functions. Therefore, there is an additional, large bacterial contribution to the evolution of eukaryotes, implying that fundamental eukaryotic properties do not strictly follow the traditional informational/operational divide for archaeal/bacterial contributions to eukaryogenesis. CONCLUSION: This study demonstrates the extent and process through which prokaryotic fragments from bacterial and archaeal genes inherited during eukaryogenesis underly the creation of novel chimeric genes with important functions.


Assuntos
Quimera/genética , Quimera/metabolismo , Bases de Dados Genéticas , Células Eucarióticas/fisiologia , Evolução Molecular , Filogenia
13.
Trends Genet ; 29(8): 439-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23764187

RESUMO

Networks allow the investigation of evolutionary relationships that do not fit a tree model. They are becoming a leading tool for describing the evolutionary relationships between organisms, given the comparative complexities among genomes.


Assuntos
Evolução Biológica , Modelos Genéticos , Filogenia , Animais , Genoma , Saccharomyces/genética
14.
Environ Microbiol ; 18(12): 5072-5081, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27485833

RESUMO

Based on their small size and genomic properties, ultrasmall prokaryotic groups like the Candidate Phyla Radiation have been proposed as possible symbionts dependent on other bacteria or archaea. In this study, we use a bipartite graph analysis to examine patterns of sequence similarity between draft and complete genomes from ultrasmall bacteria and other complete prokaryotic genomes, assessing whether the former group might engage in significant gene transfer (or even endosymbioses) with other community members. Our results provide preliminary evidence for many lateral gene transfers with other prokaryotes, including members of the archaea, and report the presence of divergent, membrane-associated proteins among these ultrasmall taxa. In particular, these divergent genes were found in TM6 relatives of the intracellular parasite Babela massiliensis.


Assuntos
Archaea/genética , Bactérias/genética , Proteínas de Bactérias/genética , Transferência Genética Horizontal , Proteínas de Membrana/genética , Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Genoma Arqueal , Genoma Bacteriano , Proteínas de Membrana/metabolismo , Filogenia , Simbiose
15.
Proc Natl Acad Sci U S A ; 110(17): E1594-603, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23576716

RESUMO

The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses and 1,044 plasmids. This network contains multiple signatures of the chimerical origin of Eukaryotes as a fusion of an archaebacterium and a eubacterium that could not have been observed using phylogenetic trees. A number of connected components (gene sets with stronger similarities than expected by chance) contain pairs of eukaryotic sequences exhibiting no direct detectable similarity. Instead, many eukaryotic sequences were indirectly connected through a "eukaryote-archaebacterium-eubacterium-eukaryote" similarity path. Furthermore, eukaryotic genes highly connected to prokaryotic genes from one domain tend not to be connected to genes from the other prokaryotic domain. Genes of archaebacterial and eubacterial ancestry tend to perform different functions and to act at different subcellular compartments, but in such an intertwined way that suggests an early rather than late integration of both gene repertoires. The archaebacterial repertoire has a similar size in all eukaryotic genomes whereas the number of eubacterium-derived genes is much more variable, suggesting a higher plasticity of this gene repertoire. Consequently, highly reduced eukaryotic genomes contain more genes of archaebacterial than eubacterial affinity. Connected components with prokaryotic and eukaryotic genes tend to include viral and plasmid genes, compatible with a role of gene mobility in the origin of Eukaryotes. Our analyses highlight the power of network approaches to study deep evolutionary events.


Assuntos
Archaea/genética , Bactérias/genética , Eucariotos/genética , Genes/genética , Filogenia , Homologia de Sequência do Ácido Nucleico , Vírus/genética , Evolução Biológica , Biologia Computacional , Plasmídeos/genética , Proteoma/genética
16.
BMC Biol ; 13: 16, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25762112

RESUMO

BACKGROUND: High-throughput sequencing technologies are lifting major limitations to molecular-based ecological studies of eukaryotic microbial diversity, but analyses of the resulting millions of short sequences remain a major bottleneck for these approaches. Here, we introduce the analytical and statistical framework of sequence similarity networks, increasingly used in evolutionary studies and graph theory, into the field of ecology to analyze novel pyrosequenced V4 small subunit rDNA (SSU-rDNA) sequence data sets in the context of previous studies, including SSU-rDNA Sanger sequence data from cultured ciliates and from previous environmental diversity inventories. RESULTS: Our broadly applicable protocol quantified the progress in the description of genetic diversity of ciliates by environmental SSU-rDNA surveys, detected a fundamental historical bias in the tendency to recover already known groups in these surveys, and revealed substantial amounts of hidden microbial diversity. Moreover, network measures demonstrated that ciliates are not globally dispersed, but are structured by habitat and geographical location at intermediate geographical scale, as observed for bacteria, plants, and animals. CONCLUSIONS: Currently available 'universal' primers used for local in-depth sequencing surveys provide little hope to exhaust the significantly higher ciliate (and most likely microbial) diversity than previously thought. Network analyses such as presented in this study offer a promising way to guide the design of novel primers and to further explore this vast and structured microbial diversity.


Assuntos
Migração Animal/fisiologia , Cilióforos/genética , Ecossistema , Redes Reguladoras de Genes , Geografia , Modelos Biológicos , Homologia de Sequência do Ácido Nucleico , Animais , Sequência de Bases , Cilióforos/fisiologia , DNA Complementar/genética , Bases de Dados Genéticas , Variação Genética
17.
Mol Biol Evol ; 31(3): 501-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24273322

RESUMO

Defining homologous genes is important in many evolutionary studies but raises obvious issues. Some of these issues are conceptual and stem from our assumptions of how a gene evolves, others are practical, and depend on the algorithmic decisions implemented in existing software. Therefore, to make progress in the study of homology, both ontological and epistemological questions must be considered. In particular, defining homologous genes cannot be solely addressed under the classic assumptions of strong tree thinking, according to which genes evolve in a strictly tree-like fashion of vertical descent and divergence and the problems of homology detection are primarily methodological. Gene homology could also be considered under a different perspective where genes evolve as "public goods," subjected to various introgressive processes. In this latter case, defining homologous genes becomes a matter of designing models suited to the actual complexity of the data and how such complexity arises, rather than trying to fit genetic data to some a priori tree-like evolutionary model, a practice that inevitably results in the loss of much information. Here we show how important aspects of the problems raised by homology detection methods can be overcome when even more fundamental roots of these problems are addressed by analyzing public goods thinking evolutionary processes through which genes have frequently originated. This kind of thinking acknowledges distinct types of homologs, characterized by distinct patterns, in phylogenetic and nonphylogenetic unrooted or multirooted networks. In addition, we define "family resemblances" to include genes that are related through intermediate relatives, thereby placing notions of homology in the broader context of evolutionary relationships. We conclude by presenting some payoffs of adopting such a pluralistic account of homology and family relationship, which expands the scope of evolutionary analyses beyond the traditional, yet relatively narrow focus allowed by a strong tree-thinking view on gene evolution.


Assuntos
Evolução Molecular , Modelos Genéticos , Homologia de Sequência do Ácido Nucleico , Bases de Dados Genéticas , Humanos , Família Multigênica , Filogenia
18.
Proc Natl Acad Sci U S A ; 109(45): 18266-72, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23090996

RESUMO

All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.


Assuntos
Evolução Molecular , Genealogia e Heráldica , Endogamia , Filogenia , Sequência de Bases , Bases de Dados Genéticas , Redes Reguladoras de Genes/genética
19.
Mol Biol Evol ; 30(8): 1975-86, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23666209

RESUMO

DNA sequencing technology is becoming more accessible to a variety of researchers as costs continue to decline. As researchers begin to sequence novel transcriptomes, most of these data sets lack a reference genome and will have to rely on de novo assemblers. Making comparisons across assemblies can be difficult: each program has its strengths and weaknesses, and no tool exists to comparatively evaluate these data sets. We developed software in R, called Sequence Comparative Analysis using Networks (SCAN), to perform statistical comparisons between distinct assemblies. SCAN uses a reference data set to identify the most accurate de novo assembly and the "good" transcripts in the user's data. We tested SCAN on three publicly available transcriptomes, each assembled using three assembly programs. Moreover, we sequenced the transcriptome of the oomycete Achlya hypogyna and compared de novo assemblies from Velvet, ABySS, and the CLC Genomics Workbench assembly algorithms. One thousand one hundred twenty-eight of the CLC transcripts were statistically similar to the reference, compared with 49 of the Velvet transcripts and 937 of the ABySS transcripts. SCAN's strength is providing statistical support for transcript assemblies in a biological context. However, SCAN is designed to compare distinct node sets in networks, therefore it can also easily be extended to perform statistical comparisons on any network graph regardless of what the nodes represent.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Software , Transcriptoma , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala
20.
Bioinformatics ; 29(7): 837-44, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23365410

RESUMO

MOTIVATION: Gene fusion is an important evolutionary process. It can yield valuable information to infer the interactions and functions of proteins. Fused genes have been identified as non-transitive patterns of similarity in triplets of genes. To be computationally tractable, this approach usually imposes an a priori distinction between a dataset in which fused genes are searched for, and a dataset that may have provided genetic material for fusion. This reduces the 'genetic space' in which fusion can be discovered, as only a subset of triplets of genes is investigated. Moreover, this approach may have a high-false-positive rate, and it does not identify gene families descending from a common fusion event. RESULTS: We represent similarities between sequences as a network. This leads to an efficient formulation of previous methods of fused gene identification, which we implemented in the Python program FusedTriplets. Furthermore, we propose a new characterization of families of fused genes, as clique minimal separators of the sequence similarity network. This well-studied graph topology provides a robust and fast method of detection, well suited for automatic analyses of big datasets. We implemented this method in the C++ program MosaicFinder, which additionally uses local alignments to discard false-positive candidates and indicates potential fusion points. The grouping into families will help distinguish sequencing or prediction errors from real biological fusions, and it will yield additional insight into the function and history of fused genes. AVAILABILITY: FusedTriplets and MosaicFinder are published under the GPL license and are freely available with their source code at this address: http://sourceforge.net/projects/mosaicfinder. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Fusão Gênica , Família Multigênica , Alinhamento de Sequência/métodos , Software , Algoritmos , Análise de Sequência de DNA , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA