Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903662

RESUMO

Intense exposure to UVB radiation incites excessive production of reactive oxygen species (ROS) and inflammation. The resolution of inflammation is an active process orchestrated by a family of lipid molecules that includes AT-RvD1, a specialized proresolving lipid mediator (SPM). AT-RvD1 is derived from omega-3, which presents anti-inflammatory activity and reduces oxidative stress markers. The present work aims to investigate the protective effect of AT-RvD1 on UVB-induced inflammation and oxidative stress in hairless mice. Animals were first treated with 30, 100, and 300 pg/animal AT-RvD1 (i.v.) and then exposed to UVB (4.14 J/cm2). The results showed that 300 pg/animal of AT-RvD1 could restrict skin edema, neutrophil and mast cell infiltration, COX-2 mRNA expression, cytokine release, and MMP-9 activity and restore skin antioxidant capacity as per FRAP and ABTS assays and control O2•- production, lipoperoxidation, epidermal thickening, and sunburn cells development. AT-RvD1 could reverse the UVB-induced downregulation of Nrf2 and its downstream targets GSH, catalase, and NOQ-1. Our results suggest that by upregulating the Nrf2 pathway, AT-RvD1 promotes the expression of ARE genes, restoring the skin's natural antioxidant defense against UVB exposition to avoid oxidative stress, inflammation, and tissue damage.


Assuntos
Antioxidantes , Aspirina , Animais , Camundongos , Antioxidantes/farmacologia , Aspirina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inflamação , Ácidos Docosa-Hexaenoicos/farmacologia , Raios Ultravioleta
2.
An Acad Bras Cienc ; 94(4): e20201058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36477988

RESUMO

UVB-irradiation increases the risk of various skin disorders, therefore leading to inflammation and oxidative stress. In this sense, antioxidant-rich herbs such as Rosmarinus officinalis may be useful in minimizing the damage promoted by reactive oxygen species. In this work, we report the efficacy of a R. officinalis hydroethanolic extract (ROe)-loaded emulgel in preventing UVB-related skin damage. Total phenols were determined using Folin-Ciocalteu assay, and the main phytocomponents in the extract were identified by UHPLC-HRMS. Moreover, in vitro sun protection factor (SPF) value of ROe was also assessed, and we investigated the in vivo protective effect of an emulgel containing ROe against UVB-induced damage in an animal model. The ROe exhibited commercially viable SPF activity (7.56 ± 0.16) and remarkable polyphenolic content (24.15 ± 0.11 mg (Eq.GA)/g). HPLC-MS and UHPLC-HRMS results showcased that the main compounds in ROe were: rosmarinic acid, carnosic acid and carnosol. The evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ROe against several radicals and the capacity to reduce iron. Therefore, we demonstrated that topical application of the formulation containing ROe inhibited edema formation, myeloperoxidase activity, GSH depletion and maintained ferric reducing (FRAP) and ABTS scavenging abilities of the skin after UVB exposure.

3.
Food Technol Biotechnol ; 60(1): 21-28, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35440885

RESUMO

Research background: Extracts from grape pomace, including the wine, show many biological effects such as antioxidant and anti-inflammatory activities. Unfortunately, winemakers discard the bagasse, so the waste is not exploited, although it contains bioactive compounds with antioxidant and anti-inflammatory properties. The work aims to analyze the hydroethanolic extract of peels from Vitis labrusca agro-industrial waste and to evaluate its antinociceptive and anti-inflammatory properties. This study is relevant for reusing a residue and adding value to the grape economic chain. Experimental approach: A representative sample of pomace was obtained and the peels were used to produce the extract. The phenolic compounds were determined by mass spectrometry in multiple reaction monitoring mode and Folin-Ciocalteu colorimetric method, using gallic acid as standard. The biological analyses were carried out using mice orally treated with crude extract at doses of 30, 100 and 300 mg/kg. We evaluated mechanical hyperalgesia by the von Frey method, thermal heat hyperalgesia using a hot plate at 55 °C, paw edema using a pachymeter, and neutrophil recruitment by measurement of myeloperoxidase activity. The nephrotoxicity and hepatotoxicity were evaluated by biochemical analyses using blood samples that were collected after the Vitis labrusca administration. Results and conclusions: In all wet winemaking residues peel mass fraction was 75%, and in dry residues 59%. We identified nine anthocyanins (3-O-glucosides: peonidin, delphinidin, petunidin and malvidin; 3-p-coumaroyl-glucosides: cyanidin, peonidin, petunidin and malvidin, and malvidin-3,5-diglucoside), five flavonoids (apigenin-7-glucoside, luteolin-7-glucoside, quercetin-3-galactoside, isorhamnetin-3-glucoside and myricetin-3-rutinoside), and mass fraction of phenolic compounds, expressed as gallic acid equivalents, was 26.62 mg/g. In vivo assays showed that Vitis labrusca extract at mass fractions 100 and 300 mg/kg reduced carrageenan-induced mechanical and thermal hyperalgesia, 50% of the paw edema, and neutrophil recruitment. In addition, there were no indications of nephrotoxicity and hepatotoxicity. Our extract obtained from winemaking residue has analgesic and anti-inflammatory properties, related at least in part to the presence of phenolic compounds, and it is not toxic to renal and hepatic tissues. Novelty and scientific contribution: This bio-product can be used as an alternative to synthetic anti-inflammatory agents with the same pharmacological potential and fewer side effects. We demonstrated that Vitis labrusca winemaking waste can be used for the production of antinociceptive and anti-inflammatory products (nutraceutical, pharmaceutical and cosmetics) without toxicity, contributing to the environmental economy.

4.
Photochem Photobiol Sci ; 20(8): 1033-1051, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34297334

RESUMO

Cordia verbenacea DC (Boraginaceae) is a flowering shrub found along the Brazilian Atlantic Forest, Brazilian coast, and low areas of the Amazon. The crude extract of its leaves is widely used in Brazilian folk medicine as an anti-inflammatory, both topically and orally. The aim of this study is to evaluate the activity of C. verbenacea ethanolic leaves extract (CVE) against UVB-triggered cutaneous inflammation and oxidative damage in hairless mice. CVE treatment recovered cutaneous antioxidant capacity demonstrated by scavenging ABTS+ free radical and iron-reducing antioxidant potential evaluated by FRAP. CVE also controlled the following UV-triggered events in the skin: reduced glutathione (GSH) depletion, catalase activity decrease, and superoxide anion (O⋅-) build-up. Furthermore, mice treated with CVE exhibited less inflammation, shown by the reduction in COX-2 expression, TNF-α, IL-1ß, IL-6, edema, and neutrophil infiltration. CVE also regulated epidermal thickening and sunburn cells, reduced dermal mast cells, and preserved collagen integrity. The best results were obtained using 5% CVE-added emulsion. The present data demonstrate that topical administration of CVE presents photochemoprotective activity in a mouse model of UVB inflammation and oxidative stress. Because of the intricate network linking inflammation, oxidative stress, and skin cancer, these results also indicate the importance of further studies elucidating a possible role of C. verbenacea in the prevention of UVB-induced skin cancer and evaluating a potential synergy between CVE and sunscreens in topical products against UVB damaging effects to the skin.


Assuntos
Cordia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Administração Tópica , Animais , Emulsões , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Folhas de Planta/química , Pele/metabolismo , Protetores Solares/administração & dosagem , Protetores Solares/química , Protetores Solares/farmacologia
5.
Mediators Inflamm ; 2021: 9330596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764817

RESUMO

UVB radiation is certainly one of the most important environmental threats to which we are subjected to. This fact highlights the crucial protective role of the skin. However, the skin itself may not be capable of protecting against UVB depending on irradiation intensity and time of exposition. Sun blockers are used to protect our skin, but they fail to fully protect it against oxidative and inflammatory injuries initiated by UVB. To solve this issue, topical administration of active molecules is an option. 15-Deoxy-Δ 12,14-prostaglandin J2 (15d-PGJ2) is an arachidonic acid-derived lipid with proresolution and anti-inflammatory actions. However, as far as we are aware, there is no evidence of its therapeutic use in a topical formulation to treat the deleterious events initiated by UVB, which was the aim of the present study. We used a nonionic cream to vehiculate 15d-PGJ2 (30, 90, and 300 ng/mouse) (TFcPGJ2) in the skin of hairless mice. UVB increased skin edema, myeloperoxidase activity, metalloproteinase-9 activity, lipid peroxidation, superoxide anion production, gp91phox and COX-2 mRNA expression, cytokine production, sunburn and mast cells, thickening of the epidermis, and collagen degradation. UVB also diminished skin ability to reduce iron and scavenge free radicals, reduced glutathione (GSH), sulfhydryl proteins, and catalase activity. TFcPGJ2 inhibited all these pathological alterations in the skin caused by UVB. No activity was observed with the unloaded topical formulation. The protective outcome of TFcPGJ2 indicates it is a promising therapeutic approach against cutaneous inflammatory and oxidative pathological alterations.


Assuntos
Estresse Oxidativo , Prostaglandinas , Administração Tópica , Animais , Camundongos , Camundongos Pelados , Prostaglandinas/metabolismo , Pele/metabolismo , Raios Ultravioleta
6.
Inflammopharmacology ; 28(6): 1663-1675, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32141011

RESUMO

Evidence demonstrates the pronounced anti-inflammatory activity of a beetroot (Beta vulgaris) dye enriched in betalains obtained using precipitation with ethanol. Herein, we expand upon our previous observations and demonstrate the analgesic and antioxidant effect of betalains. Betalains [10-1000 mg/kg; intraperitoneal route (i.p.)] diminished acetic acid- and PBQ-induced abdominal contortions, and the overt pain-like behaviour induced by complete Freund`s adjuvant (CFA) and formalin (intraplantar; i.pl.) injection. Moreover, betalains (100 mg/kg) administered by various routes [i.p. or subcutaneous (s.c.)] or as a post-treatment reduced carrageenin- or CFA-induced hyperalgesia. Mechanistically, betalains mitigated carrageenin-induced tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, superoxide anion levels, and lipid peroxidation. Betalains also stopped the depletion of reduced glutathione (GSH) levels and ferric reducing ability produced by carrageenin, as well as upregulated Nrf2 and Ho1 transcript expression in the plantar tissue of mice. Furthermore, betalains showed hydroxyl radical, 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) radical (ABTS+), and 2,2-diphenyl-1-picryl-hydrazyl radical (DPPH•) scavenging ability and iron-chelating activity (bathophenantroline assay), and inhibited iron-independent and iron-dependent lipid peroxidation (LPO) in vitro. Finally, betalains-treated bone marrow-derived macrophages exhibited lower levels of cytokines (TNF-α and IL-1ß), and superoxide anion levels and nuclear factor kappa B (NF-κB) activation following lipopolysaccharide (LPS) stimulation. Therefore, this betalain-rich dye extracted using a novel precipitation approach presents prominent analgesic effect in varied models of pain by mechanisms targeting cytokines and oxidative stress.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Beta vulgaris/química , Betalaínas/farmacologia , Inflamação/tratamento farmacológico , Animais , Carragenina/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Dor/induzido quimicamente , Dor/metabolismo , Superóxidos/metabolismo
7.
Molecules ; 25(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604968

RESUMO

Excessive exposure to UV, especially UVB, is the most important risk factor for skin cancer and premature skin aging. The identification of the specialized pro-resolving lipid mediators (SPMs) challenged the preexisting paradigm of how inflammation ends. Rather than a passive process, the resolution of inflammation relies on the active production of SPMs, such as Lipoxins (Lx), Maresins, protectins, and Resolvins. LXA4 is an SPM that exerts its action through ALX/FPR2 receptor. Stable ALX/FPR2 agonists are required because SPMs can be quickly metabolized within tissues near the site of formation. BML-111 is a commercially available synthetic ALX/FPR2 receptor agonist with analgesic, antioxidant, and anti-inflammatory properties. Based on that, we aimed to determine the effect of BML-111 in a model of UVB-induced skin inflammation in hairless mice. We demonstrated that BML-111 ameliorates the signs of UVB-induced skin inflammation by reducing neutrophil recruitment and mast cell activation. Reduction of these cells by BML-111 led to lower number of sunburn cells formation, decrease in epidermal thickness, collagen degradation, cytokine production (TNF-α, IL-1ß, IL-6, TGF, and IL-10), and oxidative stress (observed by an increase in total antioxidant capacity and Nrf2 signaling pathway), indicating that BML-111 might be a promising drug to treat skin disorders.


Assuntos
Dermatite/prevenção & controle , Ácidos Heptanoicos/administração & dosagem , Protetores contra Radiação/administração & dosagem , Receptores de Lipoxinas/antagonistas & inibidores , Animais , Antígenos CD59/metabolismo , Dermatite/etiologia , Dermatite/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Relação Dose-Resposta a Droga , Ácidos Heptanoicos/farmacologia , Lipoxinas/metabolismo , Camundongos , Camundongos Pelados , Protetores contra Radiação/farmacologia , Raios Ultravioleta/efeitos adversos
8.
Photochem Photobiol Sci ; 16(7): 1162-1173, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28594010

RESUMO

trans-Chalcone is a plant flavonoid precursor, which lacks broad investigation on its biological activity in inflammatory processes. In the present study, anti-inflammatory and antioxidant mechanisms of systemic administration with trans-chalcone, a flavonoid precursor, on ultraviolet (UV) irradiation-induced skin inflammation and oxidative stress in hairless mice were investigated by the following parameters: skin edema, myeloperoxidase activity (neutrophil marker), matrix metalloproteinase-9 activity, reduced glutathione levels, catalase activity, lipid peroxidation products, superoxide anion production, gp91phox (NADPH oxidase subunit) mRNA expression by quantitative PCR and cytokine production by ELISA. Systemic treatment with trans-chalcone inhibited skin inflammation by reducing skin edema and neutrophil recruitment, and also inhibited matrix metalloproteinase-9 activity. trans-Chalcone also inhibited oxidative stress, gp91phox mRNA expression, and the production of a wide range of pro-inflammatory cytokines, while it did not affect anti-inflammatory cytokines induced by UV irradiation. However, trans-chalcone did not prevent oxidative stress in vitro, suggesting that its in vivo effect is more related to anti-inflammatory properties rather than a direct antioxidant effect. In conclusion, treatment with trans-chalcone inhibited UV-induced skin inflammation resulting in oxidative stress inhibition in vivo. Therefore, systemic supplementation with this compound may represent an important therapeutic approach in inflammatory skin diseases induced by UV irradiation.


Assuntos
Chalcona/farmacologia , Citocinas/biossíntese , Inflamação/prevenção & controle , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios Ultravioleta , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Chalcona/química , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Ensaio de Imunoadsorção Enzimática , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Pelados , Estrutura Molecular , Estresse Oxidativo/efeitos da radiação , Pele/metabolismo , Pele/patologia , Relação Estrutura-Atividade
9.
Photochem Photobiol Sci ; 15(4): 554-63, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27021784

RESUMO

Skin exposure to ultraviolet B (UVB) irradiation has increased significantly in recent years due to ozone depletion, and it represents the main cause of many skin diseases. Hesperidin methyl chalcone (HMC) is a compound used to treat vascular diseases that has demonstrated anti-inflammatory activities in pre-clinical studies. Herein, we tested the antioxidant activity of HMC in cell free systems and the in vivo effects of a stable topical formulation containing HMC in a mouse model of skin oxidative stress and inflammation induced by UVB irradiation. HMC presented ferric reducing power, neutralized 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and hydroxyl free radicals, and inhibited lipid peroxidation. In hairless mice, a topical formulation containing HMC inhibited UVB irradiation-induced skin edema, depletion of antioxidant capacity (ferric and ABTS reducing abilities and catalase activity), lipid peroxidation, superoxide anion production and mRNA expression of gp91phox (nicotinamide adenine dinucleotide phosphate [NADPH] oxidase 2 sub-unity). In addition, HMC inhibited UVB irradiation-induced depletion of reduced glutathione levels by maintaining glutathione peroxidase-1 and glutathione reductase mRNA expression, prevented down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression and increased heme oxygenase-1 mRNA expression. Finally, we demonstrated that topical application of the formulation containing HMC inhibited cytokine (TNF-α, IL-1ß, IL-6, and IL-10) production induced by UVB irradiation. Therefore, this topical formulation containing HMC is a promising new therapeutic approach to protecting the skin from the deleterious effects of UVB irradiation.


Assuntos
Chalconas/administração & dosagem , Hesperidina/análogos & derivados , Inflamação/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Pele/efeitos dos fármacos , Raios Ultravioleta , Administração Tópica , Animais , Chalconas/farmacologia , Citocinas/biossíntese , Heme Oxigenase-1/genética , Hesperidina/administração & dosagem , Hesperidina/farmacologia , Inflamação/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Pelados , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/genética , RNA Mensageiro/genética , Pele/metabolismo , Superóxidos/metabolismo
10.
J Nat Prod ; 79(5): 1329-38, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27191910

RESUMO

Evidence shows beneficial effects of resveratrol (RES) on human health. However, its poor aqueous solubility limits therapeutic effectiveness. Thus, the use of nanostructured delivery systems for RES, such as a liquid-crystalline system (LCS), could be viable. The purpose of this study was to develop, characterize, and determine the in vivo effectiveness of a RES-loaded LCS. We studied an LCS containing silicon glycol copolymer, polyether functional siloxane, and the polymeric dispersion carbomer homopolymer type B (C974) in the ratio 20:55:25 with and without RES. Results obtained using polarized light microscopy, small-angle X-ray scattering, and rheology analysis showed that the RES-loaded LCS system presents a lamellar structure and behaves as a non-Newtonian fluid presenting pseudoplastic (the apparent viscosity decreases as the stress increases) and thixotropic (the apparent viscosity decreases with the duration of stress) behaviors. Cytotoxicity studies showed that the formulation components are noncytotoxic. Topical application of a RES-loaded LCS protected hairless mice from UVB-irradiation-induced skin damage by inhibiting edema, neutrophil recruitment, lipid hydroperoxide and superoxide anion production, gp91phox mRNA expression, and oxidative stress. The RES-loaded LCS maintained 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric reducing abilities, catalase activity, reduced glutathione levels, and mRNA expression of glutathione peroxidase 1 and glutathione reductase. The RES-loaded LCS also up-regulated matrix metalloproteinase-9 activity, IL-10 production, and mRNA expression of transcription factor Nrf2 and heme oxygenase-1. Therefore, a RES-loaded LCS is a promising new therapeutic approach to mitigate skin photodamage.


Assuntos
Estresse Oxidativo/efeitos da radiação , Pele/efeitos dos fármacos , Estilbenos/farmacologia , Raios Ultravioleta/efeitos adversos , Animais , Antioxidantes/farmacologia , Benzotiazóis/química , Benzotiazóis/farmacologia , Edema , Feminino , Glutationa/metabolismo , Glutationa Peroxidase , Heme Oxigenase-1/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-10/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Pelados , Estrutura Molecular , Resveratrol , Estilbenos/química , Ácidos Sulfônicos/química , Ácidos Sulfônicos/farmacologia , Superóxidos/metabolismo , Glutationa Peroxidase GPX1
11.
J Nat Prod ; 78(8): 1799-808, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26192250

RESUMO

Vanillic acid (1) is a flavoring agent found in edible plants and fruits. It is an oxidized form of vanillin. Phenolic compounds form a substantial part of plant foods used as antioxidants with beneficial biological activities. These compounds have received considerable attention because of their role in preventing human diseases. Especially, 1 presents antibacterial, antimicrobial, and chemopreventive effects. However, the mechanisms by which 1 exerts its anti-inflammatory effects in vivo are incompletely understood. Thus, the effect of 1 was evaluated in murine models of inflammatory pain. Treatment with 1 inhibited the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, the second phase of the formalin test, and complete Freund's adjuvant (CFA). Treatment with 1 also inhibited carrageenan- and CFA-induced mechanical hyperalgesia, paw edema, myeloperoxidase activity, and N-acetyl-ß-D-glucosaminidase activity. The anti-inflammatory mechanisms of 1 involved the inhibition of oxidative stress, pro-inflammatory cytokine production, and NFκB activation in the carrageenan model. The present study demonstrated 1 presents analgesic and anti-inflammatory effects in a wide range of murine inflammation models, and its mechanisms of action involves antioxidant effects and NFκB-related inhibition of pro-inflammatory cytokine production.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , NF-kappa B/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ácido Vanílico/farmacologia , Animais , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Benzaldeídos/química , Benzoquinonas/farmacologia , Carragenina/efeitos adversos , Citocinas/biossíntese , Modelos Animais de Doenças , Edema/induzido quimicamente , Adjuvante de Freund/farmacologia , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Masculino , Camundongos , Estrutura Molecular , Dor/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ácido Vanílico/química
12.
J Nat Prod ; 78(7): 1647-55, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26154512

RESUMO

Ultraviolet B (UVB) irradiation may cause inflammation- and oxidative-stress-dependent skin cancer and premature aging. Naringenin (1) has been reported to have anti-inflammatory and antioxidant properties, but its effects and mechanisms on UVB irradiation-induced inflammation and oxidative stress are still not known. Thus, the present study aimed to investigate the potential of naringenin to mitigate UVB irradiation-induced inflammation and oxidative damage in the skin of hairless mice. Skin edema, myeloperoxidase (neutrophil marker) and matrix metalloproteinase-9 (MMP-9) activity, and cytokine production were measured after UVB irradiation. Oxidative stress was evaluated by 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS) scavenging ability, ferric reducing antioxidant power (FRAP), reduced glutathione levels, catalase activity, lipid peroxidation products, superoxide anion production, and gp91phox (NADPH oxidase subunit) mRNA expression by quantitative PCR. The intraperitoneal treatment with naringenin reduced skin inflammation by inhibiting skin edema, neutrophil recruitment, MMP-9 activity, and pro-inflammatory (TNF-α, IFN-γ, IL-1ß, IL-4, IL-5, IL-6, IL-12, IL-13, IL-17, IL-22, and IL-23) and anti-inflammatory (TGF-ß and IL-10) cytokines. Naringenin also inhibited oxidative stress by reducing superoxide anion production and the mRNA expression of gp91phox. Therefore, naringenin inhibits UVB irradiation-induced skin damage and may be a promising therapeutic approach to control skin disease.


Assuntos
Flavanonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pele/efeitos dos fármacos , Raios Ultravioleta , Animais , Antioxidantes/farmacologia , Benzotiazóis/farmacologia , Flavanonas/química , Glutationa/metabolismo , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-12/farmacologia , Interleucina-17 , Interleucina-4 , Interleucina-6/metabolismo , Interleucinas , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Pelados , Estrutura Molecular , Estresse Oxidativo/efeitos da radiação , Pele/efeitos da radiação , Ácidos Sulfônicos/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Interleucina 22
13.
AAPS PharmSciTech ; 15(1): 86-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24249253

RESUMO

Pimenta pseudocaryophyllus is a Brazilian native plant that presents high concentrations of flavonoids and other polyphenolic compounds. Herein, we evaluated: (1) the chemical properties of P. pseudocaryophyllus ethanolic extract (PPE), (2) the in vitro antioxidant activity (AA) of PPE and of two different topical formulations (F1 and F2) containing PPE, (3) physico-chemical and functional stability, (4) in vitro release of PPE, and (5) in vivo capacity of formulations to prevent UV-B irradiation-induced skin damage. Results show that the polyphenol and flavonoid contents in PPE were 199.33 and 28.32 mg/g, respectively, and HPLC results show the presence of eugenol, tannic acid, and rutin. Evaluation of the in vitro AA of PPE demonstrated a dose-dependent effect and an IC50 of 4.75 µg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3.0 µg/mL in 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The ferric-reducing antioxidant power (FRAP assay) was 0.046 µmol/L trolox equivalent/µg/mL of extract. Among the AA, only the capacity to scavenge DPPH radical of PPE was maintained in F1 and F2. In addition, both formulations satisfactorily released the extract. The evaluation of the functional stability of F1 and F2 did not demonstrate loss of activity by storage at room temperature and at 4°C/6 months. In irradiated mice, treatment with F1 and F2 added with PPE significantly increased the capacity to scavenge ABTS radical and the FRAP of skin compared to vehicle-treated mice. In conclusion, the present results suggest that formulations containing PPE may be a topical source of antioxidant compounds to decrease oxidative damages of the skin.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pimenta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Benzotiazóis/química , Compostos de Bifenilo/química , Química Farmacêutica/métodos , Etanol/química , Camundongos , Camundongos Pelados , Fenóis/química , Fenóis/farmacologia , Picratos/química , Pele/efeitos dos fármacos , Ácidos Sulfônicos/química , Raios Ultravioleta/efeitos adversos
14.
J Nat Prod ; 76(2): 200-8, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23347547

RESUMO

Quercetin (1) is an anti-inflammatory and antioxidant flavonoid. However, the oral administration of 1 did not lead to beneficial effects in experimental animal colitis models, which involve cytokines and oxidative stress. A possible explanation is that the absorption profile of 1 prevents its activity. Therefore, it was reasoned that the controlled release of 1 would improve its therapeutic effect. Thus, the therapeutic effect and mechanisms of 1-loaded microcapsules in acetic acid-induced colitis in mice were evaluated. Microcapsules were prepared using pectin/casein polymer and 1. The oral administration of 1-loaded microcapsules decreased neutrophil recruitment, attenuated histological alterations, and reduced macroscopical damage, edema, and IL-1ß and IL-33 production in the colon samples. Microcapsules loaded with 1 also prevented the reduction of anti-inflammatory cytokine IL-10 and the antioxidant capacity of the colon. These preclinical data indicate that pectin/casein polymer microcapsules loaded with 1 improved the anti-inflammatory and antioxidant effects of 1 compared to the nonencapsulated drug. Therefore, quercetin seems to be a promising active molecule in inflammatory bowel disease if provided with adequate controlled release.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Colite/induzido quimicamente , Quercetina/farmacologia , Ácido Acético/efeitos adversos , Administração Oral , Animais , Anti-Inflamatórios/análise , Anti-Inflamatórios/sangue , Anti-Inflamatórios/uso terapêutico , Antioxidantes/análise , Antioxidantes/química , Cápsulas , Colite/tratamento farmacológico , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Edema , Interleucina-1beta/efeitos dos fármacos , Interleucina-33 , Interleucinas/metabolismo , Masculino , Camundongos , Estrutura Molecular , Neutrófilos/efeitos dos fármacos , Peroxidase/efeitos dos fármacos , Quercetina/análise , Quercetina/sangue , Quercetina/química
15.
Pharm Biol ; 51(10): 1262-71, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23855752

RESUMO

UNLABELLED: CONTEXT. Tephrosia toxicaria is currently known as Tephrosia sinapou (Buc'hoz) A. Chev. (Fabaceae) and is a source of compounds such as flavonoids that inhibit inflammatory pain. OBJECTIVE: To investigate the analgesic effect and mechanisms of the ethyl acetate extract of T. sinapou in inflammatory pain in mice. MATERIALS AND METHODS: Behavioral responses were evaluated using mechanical (1-24 h) and thermal hyperalgesia (0.5-5 h), writhing response (20 min) and rota-rod (1-5 h) tests. Neutrophil recruitment (myeloperoxidase activity), cytokines (tumor necrosis factor [TNF]α and interleukin [IL]-1ß), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) serum levels were determined by colorimetric assays. Pharmacological treatments were opioid receptor antagonist (naloxone, 0.1-1 mg/kg) and control opioid (morphine, 5 mg/kg). Inflammatory stimuli were carrageenin (100 µg/paw), complete Freund's adjuvant (CFA, 10 µl/paw), prostaglandin E2 (PGE2, 100 ng/paw) and acetic acid (0.8%). RESULTS: The intraperitoneal pre-treatment with extract inhibited in a dose-dependent (30-300 mg/kg) dependent manner the mechanical hyperalgesia induced by carrageenin (up to 93% inhibition). The post-treatment (100 mg/kg) inhibited CFA-induced hyperalgesia (up to 63% inhibition). Naloxone (1 mg/kg) prevented the inhibitory effect of the extract over carrageenin-induced mechanical (100%) and thermal (100%) hyperalgesia, neutrophil recruitment (52%) and TNFα (63%) and IL-1ß (98%) production, thermal threshold in naïve mice (99%), PGE2-induced mechanical hyperalgesia (88%) and acetic acid-induced writhing response (49%). There was no significant alteration in the rota-rod test, and AST and ALT serum levels by extract treatment. Discussion and conclusion. Tephrosia sinapou ethyl acetate extract reduces inflammatory pain by activating an opioid receptor-dependent mechanism.


Assuntos
Analgésicos/farmacologia , Hiperalgesia/prevenção & controle , Interleucina-1beta/metabolismo , Dor/prevenção & controle , Extratos Vegetais/farmacologia , Receptores Opioides/efeitos dos fármacos , Tephrosia , Fator de Necrose Tumoral alfa/metabolismo , Acetatos/química , Analgésicos/química , Analgésicos/isolamento & purificação , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hiperalgesia/induzido quimicamente , Hiperalgesia/imunologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Antagonistas de Entorpecentes/farmacologia , Infiltração de Neutrófilos/efeitos dos fármacos , Dor/induzido quimicamente , Dor/imunologia , Dor/metabolismo , Dor/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas , Plantas Medicinais , Receptores Opioides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Solventes/química , Tephrosia/química , Fatores de Tempo
16.
Int J Pharm ; 642: 123206, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37419432

RESUMO

Improved therapies for inflammatory bowel diseases are sorely needed. Novel therapeutic agents and the development of controlled release systems for targeted tissue delivery are interesting approaches to overcome these barriers. We investigated the activity of trans-chalcone (T) in acetic acid-induced colitis in mice and developed, characterized, and determined the therapeutic effect of pectin/casein polymer microcapsules containing T (MT) in a colitis mouse model. In vitro, compound release was achieved in simulated intestinal fluid but not in the simulated gastric fluid. In vivo, since T at the dose of 3 mg/kg but not 0.3 mg/kg ameliorated colitis, we next tested the effects of MT at 0.3 mg/kg (non-effective dose). MT, but not free T at 0.3 mg/kg, significantly improved colitis outcomes such as neutrophil recruitment, antioxidant capacity, cytokine production, and NF-kB activation. This translated into reduced macro and microscopic damage in the colon. T release from the microcapsules is mediated by a pH-dependent and pectinase-regulated mechanism that provide controlled and prolonged release of T. Moreover, MT lowered the required dose for T therapeutic effect, indicating that could be a suitable pharmaceutical approach to colitis treatment. This is the first demonstration that T or MT is effective at reducing the signs of colitis.


Assuntos
Chalcona , Chalconas , Colite , Camundongos , Animais , Caseínas , Chalcona/farmacologia , Cápsulas/farmacologia , Pectinas , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , NF-kappa B , Modelos Animais de Doenças
17.
AAPS PharmSciTech ; 13(2): 364-72, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22322381

RESUMO

Controlled release of drugs is an important strategy to diminish the drug dose and adverse side effects. Aqueous mixtures of polysaccharides and proteins are usually unstable above a certain biopolymer concentration and phase separation occurs either because of repulsive (segregative) or attractive (associative) interactions. Herein, pectin/casein microcapsules were prepared by complex coacervation aiming at prolonged drug release. The morphological characteristics, particle size, distribution, and release kinetics of microcapsules were studied using as a model the hydrophilic drug acetaminophen. It was detected that complexation of pectin/casein particles occurs at pH values lower than 6, resulting in the formation of spherical particles after spray drying. Microcapsules had a mean diameter of 3.138 and 4.929 µm without drug, and of 4.680 and 5.182 µm with drug using USP and 8003 pectin, respectively. The in vitro release of acetaminophen from microcapsules was slow and the drug release mechanism was controlled by diffusion following first-order kinetics. There was greater release of acetaminophen in simulated gastric fluid than simulated intestinal fluid conditions. Concluding, the polymeric system present herein seemed to be appropriate for a prolonged release of acetaminophen throughout the gastrointestinal tract. Nevertheless, it is likely that it is a promising pectin/casein complex for lipossoluble drugs, which merits further investigation.


Assuntos
Acetaminofen/química , Caseínas/química , Portadores de Fármacos , Pectinas/química , Cápsulas , Química Farmacêutica , Preparações de Ação Retardada , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Microscopia Eletrônica de Varredura , Modelos Químicos , Tamanho da Partícula , Solubilidade , Propriedades de Superfície , Tecnologia Farmacêutica/métodos
18.
Pharmaceutics ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36678631

RESUMO

Asthma is a chronic disease with increasing prevalence and incidence, manifested by allergic inflammatory reactions, and is life-threatening for patients with severe disease. Repetitive challenges with the allergens and limitation of treatment efficacy greatly dampens successful management of asthma. The adverse events related to several drugs currently used, such as corticosteroids and ß-agonists, and the low rigorous adherence to preconized protocols likely compromises a more assertive therapy. Flavonoids represent a class of natural compounds with extraordinary antioxidant and anti-inflammatory properties, with their potential benefits already demonstrated for several diseases, including asthma. Advanced technology has been used in the pharmaceutical field to improve the efficacy and safety of drugs. Notably, there is also an increasing interest for the application of these techniques using natural products as active molecules. Flavones, flavonols, flavanones, and chalcones are examples of flavonoid compounds that were tested in controlled delivery systems for asthma treatment, and which achieved better treatment results in comparison to their free forms. This review aims to provide a comprehensive understanding of the development of novel controlled delivery systems to enhance the therapeutic potential of flavonoids as active molecules for asthma treatment.

19.
Food Chem ; 368: 130817, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411863

RESUMO

Novel microcapsules containing grape peel by-product extract were obtained. In this pursuit, complex coacervation of casein/pectin bioconjugate and spray-drying were combined. We have investigated the role of the dispersion feed rate (FR), drying air inlet temperature (IT) and drying air flow rate (AR) in the drying yield, microencapsulation efficiency, total polyphenols and anthocyanins contents, antioxidant activity, and morphology of the products. Also, the first-order degradation kinetics of the phytochemicals for both the extract and dried microcapsules was assessed and compared. The loss on the phytochemicals during spray-drying was attenuated in up to 88%, and the IT was the main factor affecting the particle properties. The polyphenols on the extract interacted with the polymers, influencing the assemble of the bioconjugate and the particle's features. Such microencapsulation strategy enhanced the thermal stability of the phytochemicals and rendered biocompatible and biodegradable products of which the nutraceutical and cosmeceutical application may have potential.


Assuntos
Vitis , Antocianinas , Cápsulas , Caseínas , Composição de Medicamentos , Pectinas
20.
Chem Biol Interact ; 333: 109315, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33171134

RESUMO

Neutrophil infiltration, pro-inflammatory cytokines, and reactive oxygen species (ROS) production have been implicated in development and progression of ulcerative colitis (UC), an inflammatory bowel disease (IBD) characterized by ulcerating inflammation of the mucosal layer generally restricted to the colon. The side effects, safety and human intolerance are limitations of the currently approved treatments for UC. Hesperidin methyl chalcone (HMC) is a flavonoid used to treat chronic venous disease, which shows anti-inflammatory, analgesic, and antioxidant properties in pre-clinical studies, however, its effects on colitis have never been described. Therefore, we aimed to evaluate the protective effects of HMC in a mouse model of acetic acid-induced colitis. Treatment with HMC significantly reduced neutrophil infiltration, edema, colon shortening, macro and microscopic damages induced by intracolonic administration of acetic acid. The improvement of colitis after HMC treatment is related to the increase in colon antioxidant status, and the inhibition of pro-inflammatory cytokines TNF-α, IL-6, IL-1ß, and IL-33 in the colon. We observed, moreover, that HMC inhibited NF-κB activation in the colon, which might explain the reduction of the cytokines we observed. Finally, these results demonstrate a novel applicability of HMC to increase antioxidant response and reduce inflammation during acetic acid-induced colitis suggesting it as a promising therapeutic approach for the treatment of ulcerative colitis.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Chalconas/farmacologia , Colite Ulcerativa/tratamento farmacológico , Hesperidina/análogos & derivados , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Chalconas/uso terapêutico , Colite Ulcerativa/complicações , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Citocinas/biossíntese , Modelos Animais de Doenças , Edema/complicações , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Masculino , Camundongos , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA