Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Br J Haematol ; 186(1): 54-59, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30864168

RESUMO

Immunological mechanisms of treatment-free remission (TFR) in chronic myeloid leukaemia (CML) are poorly defined and, to date, no correlation between successful TFR and CD8(+) T-cell subsets has been found. We analysed a new identified human subset of CD8(+) T-cells, namely innate CD8(+) T-cells, in CML patients with TFR ≥ 2 years. We demonstrated a dramatic increase of functionally active innate CD8(+) T-cells in these patients as compared to control subjects and patients in remission under tyrosine kinase inhibitors. Moreover, we found a positive correlation between frequencies of innate CD8(+) T-cells and natural killer cells, possibly representing a new innate biomarker profile of successful TFR.


Assuntos
Linfócitos T CD8-Positivos/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Remissão Espontânea , Estudos de Casos e Controles , Feminino , Humanos , Imunidade Inata , Células Matadoras Naturais , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Subpopulações de Linfócitos T/imunologia
2.
Biochem Biophys Res Commun ; 454(4): 524-30, 2014 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-25450687

RESUMO

An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.


Assuntos
Núcleo Celular/metabolismo , Glioma/patologia , Receptores Tipo II de Peptídeo Intestinal Vasoativo/análise , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/análise , Transporte Ativo do Núcleo Celular , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Análise Serial de Tecidos , Células Tumorais Cultivadas , Adulto Jovem
3.
J Neurosci ; 32(38): 13255-63, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22993441

RESUMO

An endoproteolytic cleavage termed α-cleavage between residues 111/112 is a characteristic feature of the cellular prion protein (PrP(C)). This cleavage generates a soluble N-terminal fragment (PrPN1) and a glycosylphosphatidylinositol-anchored C-terminal fragment (PrPC1). Independent studies demonstrate that modulating PrP(C) α-cleavage represents a potential therapeutic strategy in prion diseases. The regulation of PrP(C) α-cleavage is unclear. The only known domain that is essential for the α-cleavage to occur is a hydrophobic domain (HD). Importantly, the HD is also essential for the formation of PrP(C) homodimers. To explore the role of PrP(C) homodimerization on the α-cleavage, we used a well described inducible dimerization strategy whereby a chimeric PrP(C) composed of a modified FK506-binding protein (Fv) fused with PrP(C) and termed Fv-PrP is incubated in the presence of a dimerizer AP20187 ligand. We show that homodimerization leads to a considerable increase of PrP(C) α-cleavage in cultured cells and release of PrPN1 and PrPC1. Interestingly, enforced homodimerization increased PrP(C) levels at the plasma membrane, and preventing PrP(C) trafficking to the cell surface inhibited dimerization-induced α-cleavage. These observations were confirmed in primary hippocampal neurons from transgenic mice expressing Fv-PrP. The proteases responsible for the α-cleavage are still elusive, and in contrast to initial studies we confirm more recent investigations that neither ADAM10 nor ADAM17 are involved. Importantly, PrPN1 produced after PrP(C) homodimerization protects against toxic amyloid-ß (Aß) oligomers. Thus, our results show that PrP(C) homodimerization is an important regulator of PrP(C) α-cleavage and may represent a potential therapeutic avenue against Aß toxicity in Alzheimer's disease.


Assuntos
Proteínas PrPC/química , Proteínas PrPC/metabolismo , Multimerização Proteica/fisiologia , Peptídeos beta-Amiloides/toxicidade , Animais , Caspase 3/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Cricetinae , Cricetulus , Embrião de Mamíferos , Endopeptidases/metabolismo , Hipocampo/citologia , Humanos , Marcação In Situ das Extremidades Cortadas , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas PrPC/genética , Multimerização Proteica/genética , Espécies Reativas de Oxigênio/metabolismo , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Transfecção
4.
Front Immunol ; 14: 1099529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228593

RESUMO

Over the past thirty years, the complexity of the αß-T cell compartment has been enriched by the identification of innate-like T cells (ITCs), which are composed mainly of invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells. Based on animal studies using ischemia-reperfusion (IR) models, a key role has been attributed to iNKT cells in close connection with the alarmin/cytokine interleukin (IL)-33, as early sensors of cell-stress in the initiation of acute sterile inflammation. Here we have investigated whether the new concept of a biological axis of circulating iNKT cells and IL-33 applies to humans, and may be extended to other ITC subsets, namely MAIT and γδ-T cells, in the acute sterile inflammation sequence occurring during liver transplant (LT). From a prospective biological collection of recipients, we reported that LT was accompanied by an early and preferential activation of iNKT cells, as attested by almost 40% of cells having acquired the expression of CD69 at the end of LT (i.e. 1-3 hours after portal reperfusion), as opposed to only 3-4% of conventional T cells. Early activation of iNKT cells was positively correlated with the systemic release of the alarmin IL-33 at graft reperfusion. Moreover, in a mouse model of hepatic IR, iNKT cells were activated in the periphery (spleen), and recruited in the liver in WT mice, as early as the first hour after reperfusion, whereas this phenomenon was virtually missing in IL-33-deficient mice. Although to a lesser degree than iNKT cells, MAIT and γδ-T cells also seemed targeted during LT, as attested by 30% and 10% of them acquiring CD69 expression, respectively. Like iNKT cells, and in clear contrast to γδ-T cells, activation of MAIT cells during LT was closely associated with both release of IL-33 immediately after graft reperfusion and severity of liver dysfunction occurring during the first three post-operative days. All in all, this study identifies iNKT and MAIT cells in connection with IL-33 as new key cellular factors and mechanisms of acute sterile inflammation in humans. Further investigations are required to confirm the implication of MAIT and iNKT cell subsets, and to precisely assess their functions, in the clinical course of sterile inflammation accompanying LT.


Assuntos
Hepatopatias , Células T Matadoras Naturais , Animais , Humanos , Camundongos , Alarminas/metabolismo , Inflamação/metabolismo , Interleucina-33/metabolismo , Isquemia/metabolismo , Hepatopatias/metabolismo , Células T Matadoras Naturais/metabolismo , Estudos Prospectivos , Reperfusão
5.
Biochem J ; 437(1): 97-107, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21501115

RESUMO

The switch of human melanoma cell phenotype from non to highly tumorigenic and metastatic is triggered by the increase of procathepsin L secretion, which modifies the tumour microenvironment. The aim of the present study was to identify components involved in the regulation of procathepsin L secretion in melanoma cells. We focused on Rab family members, i.e. Rab3A, Rab4A, Rab4B, Rab5A, Rab8A, Rab11A, Rab27A and Rab33A, which are involved in distinct regulatory pathways. From analysis of mRNA and protein expression of these Rab components and their knockdown by specific siRNAs (small interfering RNAs) it emerged that Rab4A protein is involved in the regulation of procathepsin L secretion. This result was strengthened as procathepsin L secretion was either inhibited by expression of a Rab4A dominant-negative mutant or increased by overexpression of the wild-type Rab4A. Rab4A regulation: (i) discriminates between procathepsin L secretion and expression of intracellular cathepsin L forms; (ii) did not modify other Rab proteins and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) expression, or IL-8 (interleukin-8) and MMP-2 (matrix metalloproteinase-2) secretion; and (iii) was still efficient during unglycosylated procathepsin L secretion. Thus down- or up-regulation of Rab4A expression or Rab4A function triggered inhibition or increase of procathepsin L secretion respectively. Furthermore, Rab4A regulation, by modifying procathepsin L secretion, switches the tumorigenic phenotype of human melanoma cells in nude mice.


Assuntos
Catepsina L/metabolismo , Precursores Enzimáticos/metabolismo , Melanoma/metabolismo , Proteínas rab4 de Ligação ao GTP/genética , Animais , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Nus , RNA Interferente Pequeno/metabolismo , Células Tumorais Cultivadas , Regulação para Cima , Proteínas rab4 de Ligação ao GTP/metabolismo
6.
J Interferon Cytokine Res ; 42(12): 624-642, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36083273

RESUMO

The presence of CD8+ T cells with a memory phenotype in nonimmunized mice has been noted for decades, but it was not until about 2 decades ago that they began to be studied in greater depth. Currently called virtual memory CD8+ T cells, they consist of a heterogeneous group of cells with memory characteristics, without any previous contact with their specific antigens. These cells were identified in mice, but a few years ago, a cell type with characteristics equivalent to the murine ones was described in healthy humans. In this review, we address the different aspects of its biology mainly developed in murine models and what is currently known about its cellular equivalent in humans.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL
7.
Front Immunol ; 12: 674016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367138

RESUMO

Immunosenescence is a physiological process that is associated with changes in the immune system, particularly among CD8 T-cells. Recent studies have hypothesized that senescent CD8 T-cells are produced with chronologic age by chronic stimulation, leading to the acquisition of hallmarks of innate-like T-cells. While conventional CD8 T-cells are quite well characterized, CD8 T-cells sharing features of NK cells and memory CD8 T-cells, are a newly described immune cell population. They can be distinguished from conventional CD8 T-cells by their combined expression of panKIR/NKG2A and Eomesodermin (E), a unique phenotype closely associated with IFN-γ production in response to innate stimulation. Here, we first provided new evidence in favor of the innate character of panKIR/NKG2A(+) E(+) CD8 T-cells in normal subjects, documenting their position at an intermediate level in the innateness gradient in terms of both innate IFN-γ production and diminished mitochondrial mass. We also revealed that CD8 E(+) panKIR/NKG2A(+) T-cells, hereafter referred to as Innate E(+) CD8 T-cells, exhibit increased senescent (CD27(-) CD28(-)) phenotype, compared to their conventional memory counterparts. Surprisingly, this phenomenon was not dependent on age. Given that inflammation related to chronic viral infection is known to induce NK-like marker expression and a senescence phenotype among CD8 T-cells, we hypothesized that innate E(+) CD8 T-cells will be preferentially associated with exacerbated cellular senescence in response to chronic alloantigen exposure or CMV infection. Accordingly, in a pilot cohort of stable kidney allotransplant recipients, we observed an increased frequency of the Innate E(+) CD8 T-cell subset, together with an exacerbated senescent phenotype. Importantly, this phenotype cannot be explained by age alone, in clear contrast to their conventional memory counterparts. The senescent phenotype in CD8 T-cells was further increased in cytomegalovirus (CMV) positive serology transplant recipients, suggesting that transplantation and CMV, rather than aging by itself, may promote an exacerbated senescent phenotype of innate CD8 T-cells. In conclusion, we proposed that kidney transplantation, via the setting of inflammatory stimuli of alloantigen exposure and CMV infection, may exogenously age the CD8 T-cell compartment, especially its innate component. The physiopathological consequences of this change in the immune system remain to be elucidated.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Imunossenescência/imunologia , Transplante de Rim , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções por Citomegalovirus/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transplante Homólogo
8.
Sci Rep ; 10(1): 3245, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094501

RESUMO

Kinase inhibitors hold great potential as targeted therapy against malignant cells. Among them, the tyrosine kinase inhibitor dasatinib is known for a number of clinically relevant off-target actions, attributed in part to effects on components of the immune system, especially conventional T-cells and natural killer (NK)-cells. Here, we have hypothesized that dasatinib also influences non-conventional T-αß cell subsets known for their potential anti-tumoral properties, namely iNKT cells and the distinct new innate CD8 T-cell subset. In mice, where the two subsets were originally characterized, an activated state of iNKT cells associated with a shift toward an iNKT cell Th1-phenotype was observed after dasatinib treatment in vivo. Despite decreased frequency of the total memory CD8 T-cell compartment, the proportion of innate-memory CD8 T-cells and their IFNγ expression in response to an innate-like stimulation increased in response to dasatinib. Lastly, in patients administered with dasatinib for the treatment of BCR-ABL-positive leukemias, we provided the proof of concept that the kinase inhibitor also influences the two innate T-cell subsets in humans, as attested by their increased frequency in the peripheral blood. These data highlight the potential immunostimulatory capacity of dasatinib on innate T-αß cells, thereby opening new opportunities for chemoimmunotherapy.


Assuntos
Dasatinibe/farmacologia , Imunidade Inata , Inibidores de Proteínas Quinases/farmacologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Feminino , Humanos , Memória Imunológica/efeitos dos fármacos , Interferon gama/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia
9.
Front Immunol ; 10: 2014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507607

RESUMO

The pyrogenic property being the first activity described, members of the interleukin-1 superfamily (IL-1α, IL-1ß, IL-18, and the newest members: IL-33, IL-36, IL-37, and IL-38) are now known to be involved in several inflammatory diseases such as obesity, atherosclerosis, cancer, viral and parasite infections, and auto-inflammatory syndromes as well as liver diseases. Inflammation processes are keystones of chronic liver diseases, of which the etiology may be viral or toxic, as in alcoholic or non-alcoholic liver diseases. Inflammation is also at stake in acute liver failure involving massive necrosis, and in ischemia-reperfusion injury in the setting of liver transplantation. The role of the IL-1 superfamily of cytokines and receptors in liver diseases can be either protective or pro-inflammatory, depending on timing and the environment. Our review provides an overview of current understanding of the IL-1 family members in liver inflammation, highlighting recent key investigations, and therapeutic perspectives. We have tried to apply the concept of trained immunity to liver diseases, based on the role of the members of the IL-1 superfamily, first of all IL-1ß but also IL-18 and IL-33, in modulating innate lymphoid immunity carried by natural killer cells, innate lymphoid cells or innate T-αß lymphocytes.


Assuntos
Suscetibilidade a Doenças , Hepatite/etiologia , Hepatite/metabolismo , Interleucina-1/genética , Interleucina-1/metabolismo , Família Multigênica , Animais , Citocinas/genética , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Predisposição Genética para Doença , Hepatite/patologia , Hepatite/terapia , Humanos , Hepatopatias/etiologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatopatias/terapia , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo
10.
Front Immunol ; 9: 2308, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374349

RESUMO

Although the contribution of iNKT cells to induction of sterile inflammation is now well-established, the nature of the endogenous compounds released early after cellular stress or damage that drive their activation and recruitment remains poorly understood. More precisely, iNKT cells have not been described as being reactive to endogenous non-protein damage-associated molecular-pattern molecules (DAMPs). A second subset of DAMPs, called alarmins, are tissue-derived nuclear proteins, constitutively expressed at high levels in epithelial barrier tissues and endothelial barriers. These potent immunostimulants, immediately released after tissue damage, include the alarmin IL-33. This factor has aroused interest due to its singular action as an alarmin during infectious, allergic responses and acute tissue injury, and as a cytokine, contributing to the latter resolutive/repair phase of sterile inflammation. IL-33 targets iNKT cells, inducing their recruitment in an inflammatory state, and amplifying their regulatory and effector functions. In the present review, we introduce the new concept of a biological axis of iNKT cells and IL-33, involved in alerting and controlling the immune cells in experimental models of sterile inflammation. This review will focus on acute organ injury models, especially ischemia-reperfusion injury, in the kidneys, liver and lungs, where iNKT cells and IL-33 have been presumed to mediate and/or control the injury mechanisms, and their potential relevance in human pathophysiology.


Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Alarminas/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Humanos , Inflamação/patologia , Interleucina-33/metabolismo
11.
Front Immunol ; 8: 316, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28396661

RESUMO

Unconventional T cells are defined by their capacity to respond to signals other than the well-known complex of peptides and major histocompatibility complex proteins. Among the burgeoning family of unconventional T cells, innate-like CD8(+) T cells in the mouse were discovered in the early 2000s. This subset of CD8(+) T cells bears a memory phenotype without having encountered a foreign antigen and can respond to innate-like IL-12 + IL-18 stimulation. Although the concept of innate memory CD8(+) T cells is now well established in mice, whether an equivalent memory NK-like T-cell population exists in humans remains under debate. We recently reported that CD8(+) T cells responding to innate-like IL-12 + IL-18 stimulation and co-expressing the transcription factor Eomesodermin (Eomes) and KIR/NKG2A membrane receptors with a memory/EMRA phenotype may represent a new, functionally distinct innate T cell subset in humans. In this review, after a summary on the known innate CD8(+) T-cell features in the mouse, we propose Eomes together with KIR/NKG2A and CD49d as a signature to standardize the identification of this innate CD8(+) T-cell subset in humans. Next, we discuss IL-4 and IL-15 involvement in the generation of innate CD8(+) T cells and particularly its possible dependency on the promyelocytic leukemia zinc-finger factor expressing iNKT cells, an innate T cell subset well documented for its susceptibility to tumor immune subversion. After that, focusing on cancer diseases, we provide new insights into the potential role of these innate CD8(+) T cells in a physiopathological context in humans. Based on empirical data obtained in cases of chronic myeloid leukemia, a myeloproliferative syndrome controlled by the immune system, and in solid tumors, we observe both the possible contribution of innate CD8(+) T cells to cancer disease control and their susceptibility to tumor immune subversion. Finally, we note that during tumor progression, innate CD8(+) T lymphocytes could be controlled by immune checkpoints. This study significantly contributes to understanding of the role of NK-like CD8(+) T cells and raises the question of the possible involvement of an iNKT/innate CD8(+) T cell axis in cancer.

12.
PLoS One ; 11(5): e0155950, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27191720

RESUMO

The EGF-family of tyrosine-kinase receptors activates cytoplasmic pathways involved in cell proliferation, migration and differentiation in response to specific extracellular ligands. Beside these canonical pathways, the nuclear localization of the ErbB receptors in primary tumours and cancer cell lines led to investigate their role as transcriptional regulators of cancer genes. The nuclear localization of ErbB3 has been reported in various cancer tissues and cell lines but the nuclear functions and the putative correlation with tumour progression and resistance to therapy remain unclear. We first assessed ErbB3 expression in normal and tumour prostate tissues. The nuclear staining was mainly due to an isoform matching the C-terminus domain of the full length ErbB3185kDa receptor. Nuclear staining was also restricted to cancer cells and was increased in advanced castration-resistant prostate cancer when compared to localized tumours, suggesting it could be involved in the progression of prostate cancer up to the terminal castration-resistant stage. ChIP-on-chip experiments were performed on immortalized and tumour cell lines selected upon characterization of endogenous nuclear expression of an ErbB380kDa isoform. Among the 1840 target promoters identified, 26 were selected before ErbB380kDa-dependent gene expression was evaluated by real-time quantitative RT-PCR, providing evidence that ErbB380kDa exerted transcriptional control on those genes. Some targets are already known to be involved in prostate cancer progression even though no link was previously established with ErbB3 membrane and/or nuclear signalling. Many others, not yet associated with prostate cancer, could provide new therapeutic possibilities for patients expressing ErbB380kDa. Detecting ErbB380kDa could thus constitute a useful marker of prognosis and response to therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Núcleo Celular/metabolismo , Redes Reguladoras de Genes , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptor ErbB-3/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Masculino , Regiões Promotoras Genéticas , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor ErbB-3/genética
13.
Front Immunol ; 7: 688, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28138330

RESUMO

We recently identified a new human subset of NK-like [KIR/NKG2A(+)] CD8(+) T cells with a marked/memory phenotype, high Eomesodermin expression, potent antigen-independent cytotoxic activity, and the capacity to generate IFN-γ rapidly after exposure to pro-inflammatory cytokines. These features support the hypothesis that this new member of the innate T cell family in humans, hereafter referred to as innate CD8(+) T cells, has a role in cancer immune surveillance analogous to invariant natural killer T (iNKT) cells. Here, we report the first quantitative and functional analysis of innate CD8(+) T cells in a physiopathological context in humans, namely chronic myeloid leukemia (CML), a well-characterized myeloproliferative disorder. We have chosen CML based on our previous report that IL-4 production by iNKT cells was deficient in CML patients at diagnosis and considering the recent evidence in mice that IL-4 promotes the generation/differentiation of innate CD8(+) T cells. We found that the pool of innate CD8(+) T cells was severely reduced in the blood of CML patients at diagnosis. Moreover, like iNKT and NK cells, innate CD8(+) T cells were functionally impaired, as attested by their loss of antigen-independent cytotoxic activity and IFN-γ production in response to innate-like stimulation with IL-12 + IL-18. Remarkably, as previously reported for IL-4 production by iNKT cells, both quantitative and functional deficiencies of innate CD8(+) T cells were at least partially corrected in patients having achieved complete cytogenetic remission following tyrosine kinase inhibitor therapy. Finally, direct correlation between the functional potential of innate CD8(+) T and iNKT cells was found when considering all healthy donors and CML patients in diagnosis and remission, in accordance with the iNKT cell-dependent generation of innate CD8(+) T cells reported in mice. All in all, our data demonstrate that CML is associated with deficiencies of innate CD8(+) T cells that are restored upon remission, thereby suggesting their possible contribution to disease control. More generally, our study strongly supports the existence of an innate iNKT/innate CD8(+) T-cell axis in humans and reveals its potential contribution to the restoration of tumor immune surveillance.

14.
PLoS One ; 9(5): e96136, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24798431

RESUMO

High-risk human papillomavirus oncoproteins E6 and E7 play a major role in HPV-related cancers. One of the main functions of E7 is the degradation of pRb, while E6 promotes the degradation of p53, inactivating the p14ARF-p53 pathway. pRb and p14ARF can repress ribosomal DNA (rDNA) transcription in part by targeting the Upstream Binding Factor 1 (UBF1), a key factor in the activation of RNA polymerase I machinery. We showed, through ectopic expression and siRNA silencing of p14ARF and/or E7, that E7 stimulates UBF1-mediated rDNA gene transcription, partly because of increased levels of phosphorylated UBF1, preventing the inhibitory function of p14ARF. Unexpectedly, activation of rDNA gene transcription was higher in cells co-expressing p14ARF and E7, compared to cells expressing E7 alone. We did not find a difference in P-UBF1 levels that could explain this data. However, p14ARF expression induced E7 to accumulate into the nucleolus, where rDNA transcription takes place, providing an opportunity for E7 to interact with nucleolar proteins involved in this process. GST-pull down and co-immunoprecipitation assays showed interactions between p14ARF, UBF1 and E7, although p14ARF and E7 are not able to directly interact. Co-expression of a pRb-binding-deficient mutant (E7C24G) and p14ARF resulted in EC24G nucleolar accumulation, but not in a significant higher activation of rDNA transcription, suggesting that the inactivation of pRb is involved in this phenomenon. Thus, p14ARF fails to prevent E7-mediated UBF1 phosphorylation, but could facilitate nucleolar pRb inactivation by targeting E7 to the nucleolus. While others have reported that p19ARF, the mouse homologue of p14ARF, inhibits some functions of E7, we showed that E7 inhibits a p53-independent function of p14ARF. These results point to a mutually functional interaction between p14ARF and E7 that might partly explain why the sustained p14ARF expression observed in most cervical pre-malignant lesions and malignancies may be ineffective.


Assuntos
Transformação Celular Viral , DNA Ribossômico/metabolismo , Papillomavirus Humano 16/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p14ARF/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Nucléolo Celular , DNA Ribossômico/genética , Feminino , Papillomavirus Humano 16/genética , Humanos , Camundongos , Mutação de Sentido Incorreto , Proteínas E7 de Papillomavirus/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteína Supressora de Tumor p14ARF/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA