Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-31536813

RESUMO

Ocean acidification and increased ocean temperature from elevated atmospheric carbon dioxide can significantly influence the physiology, growth and survival of marine organisms. Despite increasing research efforts, there are still many gaps in our knowledge of how these stressors interact to affect economically and ecologically important species. This project is the first to explore the physiological effects of high pCO2 and temperature on the acclimation potential of the purple-hinge rock scallop (Crassadoma gigantea), a widely distributed marine bivalve, important reef builder, and potential aquaculture product. Scallops were exposed to two pCO2 (365 and 1050 µatm) and temperature (14 and 21.5 °C) conditions in a two-factor experimental design. Simultaneous exposure to high temperature and high pCO2 reduced shell strength, decreased outer shell density and increased total lipid content. Despite identical diets, scallops exposed to high pCO2 had higher content of saturated fatty acids, and lower content of polyunsaturated fatty acids suggesting reorganization of fatty acid chains to sustain basic metabolic functions under high pCO2. Metagenomic sequencing of prokaryotes in scallop tissue revealed treatment differences in community composition between treatments and in the presence of genes associated with microbial cell regulation, signaling, and pigmentation. Results from this research highlight the complexity of physiological responses for calcifying species under global change related stress and provide the first insights for understanding the response of a bivalve's microbiome under multiple stressors.


Assuntos
Ácidos/química , Osso e Ossos/metabolismo , Dióxido de Carbono/análise , Microbiota , Pectinidae/fisiologia , Água do Mar/microbiologia , Temperatura , Aclimatação , Exoesqueleto , Animais , Aquecimento Global , Homeostase , Concentração de Íons de Hidrogênio , Pectinidae/microbiologia
2.
J Fungi (Basel) ; 9(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675924

RESUMO

Candida auris is a multi-drug-resistant fungal pathogen that can survive outside the host and can easily spread and colonize the healthcare environment, medical devices, and human skin. C. auris causes serious life-threatening infections (up to 60% mortality) in immunosuppressed patients staying in such contaminated healthcare facilities. Some isolates of C. auris are resistant to virtually all clinically available antifungal drugs. Therefore, alternative therapeutic approaches are urgently needed. Using in silico protein modeling and analysis, we identified a highly immunogenic and surface-exposed epitope that is conserved between C. albicans hyphal-regulated protein (Cal-Hyr1p) and Hyr1p/Iff-like proteins in C. auris (Cau-HILp). We generated monoclonal antibodies (MAb) against this Cal-Hyr1p epitope, which recognized several clinical isolates of C. auris representing all four clades. An anti-Hyr1p MAb prevented biofilm formation and enhanced opsonophagocytic killing of C. auris by macrophages. When tested for in vivo efficacy, anti-Hyr1p MAb protected 55% of mice against lethal systemic C. auris infection and showed significantly less fungal burden. Our study is highly clinically relevant and provides an effective alternative therapeutic option to treat infections due to MDR C. auris.

3.
Front Immunol ; 13: 925821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935947

RESUMO

Pre-term infants in neonatal intensive care units are vulnerable to fungal sepsis. In this patient population, Candida albicans remains the predominant fungal pathogen causing high morbidity and mortality, despite antifungal therapy. Thus, new preventative/therapeutic strategies against neonatal candidiasis are needed. Previously, we have reported that vaccination with recombinant forms of the C. albicans N-termini of the cell wall proteins Als3 (rAls3p-N) and Hyr1 (rHyr1p-N) protected adult mice from disseminated candidiasis. Further, in a Phase 1b/2a NDV-3A (an rAls3p-N formulated with alum) protected women from recurrent vulvovaginal candidiasis, with anti-Als3p IgG2 isotype being a biomarker for efficacy. Here, we performed a proof of concept study to evaluate if anti-Als3p or anti-Hyr1p antibodies are important for prevention of disseminated candidiasis in neonates. Als3 and Hyr1 antigens when adjuvanted with complete Freund's adjuvant (CFA)/incomplete Freund's adjuvant (IFA) induced a robust antibody response with a ten-fold higher titer of IgG2, than attained by either antigen formulated with alum. Transplacental transfer of these antibodies significantly reduced fungal burden in the kidneys of mice pups, and adoptive transfer of vaccinated mothers' sera into pups displayed similar levels of protection. Neutrophils were found important for this efficacy. Finally, anti-Hyr1 antisera potentiated the activity of fluconazole in protecting from C. albicans infection. Our current studies are the first in the field to emphasize the importance of anti-Als3 and anti-Hyr1 antibodies in preventing neonatal candidiasis. Considering that Candida infections in low birthweight infants is a lethal infection, active and passive vaccination strategies using these antigens could have profound clinical relevance.


Assuntos
Candida albicans , Candidíase , Animais , Animais Recém-Nascidos , Feminino , Proteínas Fúngicas/metabolismo , Humanos , Imunoglobulina G , Camundongos
4.
Transl Vis Sci Technol ; 10(7): 17, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34128966

RESUMO

Purpose: Ocular surface mucins and glycocalyx are critical for providing ocular hydration as well lubrication and repelling pathogens or allergens. Elevated levels of tear proinflammatory cytokines in dry eye may have detrimental effect on mucins and glycocalyx. The present study tested the effect of proinflammatory cytokines IL-6, TNF-α, and IFN-γ on membrane-tethered mucins expression, glycocalyx, and viability of ocular surface epithelial cells. Methods: Stratified cultures of human corneal and conjunctival epithelial cells were exposed to different concentrations of IL-6, TNF-α, and IFN-γ for 24 hours. The mucins gene and protein expressions were quantified by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). The glycocalyx was imaged using confocal microscopy after staining with Alexa 488-conjugated wheat germ agglutinin lectin. Apoptotic and necrotic cell death was quantified using flow cytometry. Results: IL-6, TNF-α, and IFN-γ treatment resulted in a significant increase in mucins (MUC)1 and MUC4 gene and protein expression in human corneal epithelial cells but caused no significant changes in the levels of these mucins in conjunctival epithelial cells. Further, these cytokines decreased MUC16 expression in both corneal and conjunctival epithelial cells. Moreover, no notable change in glycocalyx or apoptotic cell death in corneal and conjunctival epithelial cells was noted with any of the tested cytokines, but IL-6 and TNF-α exposure increased necrotic cell death in corneal and conjunctival epithelial cells, respectively. Conclusions: Our results demonstrate that proinflammatory cytokines have differential effects on human corneal and conjunctival epithelial cell mucins expression, but do not cause any damage to ocular surface epithelial cell glycocalyx.


Assuntos
Citocinas , Células Epiteliais , Glicocálix , Mucinas , Células Cultivadas , Túnica Conjuntiva/citologia , Córnea/citologia , Humanos , Mucinas/genética
5.
Invest Ophthalmol Vis Sci ; 61(11): 3, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876690

RESUMO

Purpose: Patients with diabetes mellitus are reported to have ocular surface defects, impaired ocular surface barrier function, and a higher incidence of corneal and conjunctival infections. Tight junctions are critical for ocular surface barrier function. The present study was designed to investigate the effect of high glucose exposure on human corneal and conjunctival epithelial cell barrier function and tight junction proteins. Methods: Human corneal and conjunctival epithelial cells were exposed to 15 mM and 30 mM glucose for 24 and 72 hours. The barrier function was measured using transepithelial electrical resistance (TEER). The cell migration was quantified using scratch assay. The cells were harvested for protein extraction and mRNA isolation. Gene and protein expression of claudins, zonula occludens (ZOs), and occludin was quantified using real-time PCR and Western blot. Results: Glucose caused a significant decrease in TEER after 72 hours of exposure in both corneal and conjunctival epithelial cells. Glucose did not cause any notable change in migration of either corneal or conjunctival epithelial cells. Glucose exposure did not cause any notable change in protein expression of claudin-1, ZO-1, ZO-2, ZO-3, or occludin. On the other hand, 15 mM glucose caused an increase in gene expression of claudin-1, claudin-3, ZO-2, ZO-3, and occludin, a likely response to osmotic stress since 15 mM mannitol also caused consistently similar increase in gene expression of these proteins. Conclusions: High glucose exposure causes impairment of corneal and conjunctival epithelial cell barrier function, but this detrimental effect is not caused by a decrease in expression of tight junction proteins: claudin-1, ZO-1, ZO-2, ZO-3, and occludin.


Assuntos
Epitélio Corneano/metabolismo , Regulação da Expressão Gênica , Glucose/farmacologia , RNA Mensageiro/genética , Proteínas de Junções Íntimas/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Epitélio Corneano/citologia , Humanos , Immunoblotting , RNA Mensageiro/metabolismo , Proteínas de Junções Íntimas/biossíntese , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
6.
Acta Biomater ; 102: 351-366, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31760224

RESUMO

Small interfering RNA (siRNA) therapy is a promising approach for treatment of a wide range of cancers, including breast cancers that display variable phenotypic features. To explore the general utility of siRNA therapy to control aberrant expression of genes in breast cancer, we conducted a detailed analysis of siRNA delivery and silencing response in vitro in 6 separate breast cancer cell models (MDA-MB-231, MDA-MB-231-KRas-CRM, MCF-7, AU565, MDA-MB-435 and MDA-MB-468 cells). Using lipopolymers for siRNA complexation and delivery, we found a large variation in siRNA delivery efficiency depending on the specific lipopolymer used for siRNA complexation and delivery. Some lipopolymers were effective in all cell types used in this study, indicating the possibility of universal carriers for siRNA therapy. The delivery efficiency for effective lipopolymers was not correlated with dextran uptake in the cells tested, which indicated a receptor-mediated internalization for siRNA complexes with lipopolymers, unlike fluid-phase transfer associated with dextran uptake. Consistent with this, specific inhibitors involved in clathrin- and caveolin-mediated endocytosis significantly (>50%) reduced the internalization of siRNA complexes in all cell types. Using JAK2 and STAT3 silencing in MDA-MB-231 and MDA-MB-468 cells, a general correlation between the uptake and silencing efficiency at the mRNA level was evident, but it appeared that the choice of the target rather than the cell type was more critical for consistent silencing. We conclude that siRNA therapy with lipopolymers can be undertaken in multiple breast cancer cell phenotypes with similar efficiency, indicating the general applicability of non-viral RNAi in clinical management of molecularly heterogeneous breast cancers. STATEMENT OF SIGNIFICANCE: The manuscript investigated the efficacy of siRNA carriers across multiple breast cancer cell lines. The lipopolymeric carriers were capable of delivering effective dose of siRNA to a range of breast cancer cells. Despite some differences in uptake efficiency among cell types, the mechanism of delivery was similar, with CME and CvME significantly involved in the internalization of polyplexes, while fluid-phase endocytosis was not significant. Specific target silencing was correlated to delivery efficiency, but we did notice the presence of lipopolymers that achieved high silencing with minimal siRNA delivery. Silencing specific targets in different cell types were more uniformly achieved as compared to targeting different targets in the same cells. Our studies enhance the feasibility of delivering siRNA to different types of breast cancer cells.


Assuntos
Portadores de Fármacos/química , Ácidos Graxos/química , Polietilenoimina/análogos & derivados , RNA Interferente Pequeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Clorpromazina/farmacologia , Portadores de Fármacos/metabolismo , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Ácidos Graxos/metabolismo , Inativação Gênica/efeitos dos fármacos , Genisteína/farmacologia , Humanos , Polietilenoimina/metabolismo
7.
Invest Ophthalmol Vis Sci ; 60(14): 4511-4519, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675422

RESUMO

Purpose: The present study was designed to investigate the role of ocular surface glycocalyx and mucins in graft versus host disease (GVHD)-associated dry eye. The ameliorative effect of topical rebamipide, a mucin secretagogue, on GVHD-associated dry eye was also tested. Methods: A mouse model of allogeneic transplantation was used to induce ocular GVHD with C57BL/6 as donors and B6D2F1 as recipient mice. Phenol red thread method and fluorescein staining was used to quantify tear secretion and corneal keratopathy. At 8 weeks after the allogeneic transplantation, corneas were harvested to perform glycocalyx staining and confocal microscopy. Goblet cell staining was performed using periodic acid Schiff's staining. Corneal and tear film levels of Mucin 1, 4, 16, 19, and 5AC were quantified using ELISA and real-time PCR. Rebamipide was applied topically twice daily to mice eyes. Results: Allogeneic transplantation resulted in ocular GVHD-associated dry eye characterized by a significant decrease in tear film volume and the onset of corneal keratopathy. Ocular GVHD caused a significant decrease in the area and thickness of corneal glycocalyx. A significant decrease in the goblet cells was also noted. A significant decrease in mucin 4 and 5AC levels was also observed. Topical treatment with rebamipide partially attenuated ocular GVHD-mediated decrease in tear film volume and significantly reduced the severity of corneal keratopathy. Conclusions: Ocular GVHD has detrimental impact on ocular surface glycocalyx and mucins. Rebamipide, a mucin secretagogue, partially prevents ocular GVHD-associated decrease in tear film and reduces the severity of corneal keratopathy.


Assuntos
Alanina/análogos & derivados , Antioxidantes/uso terapêutico , Síndromes do Olho Seco/metabolismo , Doença Enxerto-Hospedeiro/metabolismo , Mucinas/metabolismo , Quinolonas/uso terapêutico , Administração Oftálmica , Alanina/uso terapêutico , Animais , Transplante de Medula Óssea , Antígeno Ca-125/metabolismo , Modelos Animais de Doenças , Síndromes do Olho Seco/tratamento farmacológico , Ensaio de Imunoadsorção Enzimática , Proteínas do Olho/metabolismo , Feminino , Células Caliciformes/metabolismo , Doença Enxerto-Hospedeiro/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Mucina-5AC/metabolismo , Mucina-1/metabolismo , Mucina-4/metabolismo , Reação do Ácido Periódico de Schiff , Reação em Cadeia da Polimerase em Tempo Real , Lágrimas/metabolismo , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA