Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proteins ; 87(12): 1378-1387, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31571280

RESUMO

Critical blind assessment of structure prediction techniques is crucial for the scientific community to establish the state of the art, identify bottlenecks, and guide future developments. In Critical Assessment of Techniques in Structure Prediction (CASP), human experts assess the performance of participating methods in relation to the difficulty of the prediction task in a biennial experiment on approximately 100 targets. Yet, the development of automated computational modeling methods requires more frequent evaluation cycles and larger sets of data. The "Continuous Automated Model EvaluatiOn (CAMEO)" platform complements CASP by conducting fully automated blind prediction evaluations based on the weekly pre-release of sequences of those structures, which are going to be published in the next release of the Protein Data Bank (PDB). Each week, CAMEO publishes benchmarking results for predictions corresponding to a set of about 20 targets collected during a 4-day prediction window. CAMEO benchmarking data are generated consistently for all methods at the same point in time, enabling developers to cross-validate their method's performance, and referring to their results in publications. Many successful participants of CASP have used CAMEO-either by directly benchmarking their methods within the system or by comparing their own performance to CAMEO reference data. CAMEO offers a variety of scores reflecting different aspects of structure modeling, for example, binding site accuracy, homo-oligomer interface quality, or accuracy of local model confidence estimates. By introducing the "bestSingleTemplate" method based on structure superpositions as a reference for the accuracy of 3D modeling predictions, CAMEO facilitates objective comparison of techniques and fosters the development of advanced methods.


Assuntos
Biologia Computacional , Conformação Proteica , Proteínas/ultraestrutura , Software , Algoritmos , Benchmarking , Sítios de Ligação , Bases de Dados de Proteínas , Humanos , Modelos Moleculares , Dobramento de Proteína , Proteínas/química , Proteínas/genética , Análise de Sequência de Proteína
2.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32565533

RESUMO

In both monoclonal gammopathy of uncertain significance (MGUS) and multiple myeloma (MM) patients, immune functions are variably impaired, and there is a high risk of bacterial infections. Neutrophils are the most abundant circulating leukocytes and constitute the first line of host defense. Since little is known about the contribution of autophagy in the neutrophil function of MGUS and MM patients, we investigated the basal autophagy flux in freshly sorted neutrophils of patients and tested the plastic response of healthy neutrophils to soluble factors of MM. In freshly sorted high-density neutrophils obtained from patients with MGUS and MM or healthy subjects, we found a progressive autophagy trigger associated with soluble factors circulating in both peripheral blood and bone marrow, associated with increased IFNγ and pSTAT3S727. In normal high-density neutrophils, the formation of acidic vesicular organelles, a morphological characteristic of autophagy, could be induced after exposure for three hours with myeloma conditioned media or MM sera, an effect associated with increased phosphorylation of STAT3-pS727 and reverted by treatment with pan-JAK2 inhibitor ruxolitinib. Taken together, our data suggest that soluble factors in MM can trigger contemporary JAK2 signaling and autophagy in neutrophils, targetable with ruxolitinib.


Assuntos
Interferon gama/genética , Janus Quinase 2/genética , Mieloma Múltiplo/tratamento farmacológico , Neutrófilos/efeitos dos fármacos , Fator de Transcrição STAT3/genética , Idoso , Autofagia/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinase 2/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Gamopatia Monoclonal de Significância Indeterminada/tratamento farmacológico , Gamopatia Monoclonal de Significância Indeterminada/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Nitrilas , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Proteins ; 86 Suppl 1: 387-398, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29178137

RESUMO

Every second year, the community experiment "Critical Assessment of Techniques for Structure Prediction" (CASP) is conducting an independent blind assessment of structure prediction methods, providing a framework for comparing the performance of different approaches and discussing the latest developments in the field. Yet, developers of automated computational modeling methods clearly benefit from more frequent evaluations based on larger sets of data. The "Continuous Automated Model EvaluatiOn (CAMEO)" platform complements the CASP experiment by conducting fully automated blind prediction assessments based on the weekly pre-release of sequences of those structures, which are going to be published in the next release of the PDB Protein Data Bank. CAMEO publishes weekly benchmarking results based on models collected during a 4-day prediction window, on average assessing ca. 100 targets during a time frame of 5 weeks. CAMEO benchmarking data is generated consistently for all participating methods at the same point in time, enabling developers to benchmark and cross-validate their method's performance, and directly refer to the benchmarking results in publications. In order to facilitate server development and promote shorter release cycles, CAMEO sends weekly email with submission statistics and low performance warnings. Many participants of CASP have successfully employed CAMEO when preparing their methods for upcoming community experiments. CAMEO offers a variety of scores to allow benchmarking diverse aspects of structure prediction methods. By introducing new scoring schemes, CAMEO facilitates new development in areas of active research, for example, modeling quaternary structure, complexes, or ligand binding sites.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína/métodos , Sítios de Ligação , Bases de Dados de Proteínas , Humanos , Ligantes , Ligação Proteica
4.
Proteins ; 84 Suppl 1: 349-69, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26344049

RESUMO

The article presents assessment of the model accuracy estimation methods participating in CASP11. The results of the assessment are expected to be useful to both-developers of the methods and users who way too often are presented with structural models without annotations of accuracy. The main emphasis is placed on the ability of techniques to identify the best models from among several available. Bivariate descriptive statistics and ROC analysis are used to additionally assess the overall correctness of the predicted model accuracy scores, the correlation between the predicted and observed accuracy of models, the effectiveness in distinguishing between good and bad models, the ability to discriminate between reliable and unreliable regions in models, and the accuracy of the coordinate error self-estimates. A rigid-body measure (GDT_TS) and three local-structure-based scores (LDDT, CADaa, and SphereGrinder) are used as reference measures for evaluating methods' performance. Consensus methods, taking advantage of the availability of several models for the same target protein, perform well on the majority of tasks. Methods that predict accuracy on the basis of a single model perform comparably to consensus methods in picking the best models and in the estimation of how accurate is the local structure. More groups than in previous experiments submitted reasonable error estimates of their own models, most likely in response to a recommendation from CASP and the increasing demand from users. Proteins 2016; 84(Suppl 1):349-369. © 2015 Wiley Periodicals, Inc.


Assuntos
Benchmarking , Biologia Computacional/estatística & dados numéricos , Modelos Moleculares , Modelos Estatísticos , Proteínas/química , Software , Algoritmos , Biologia Computacional/métodos , Humanos , Internet , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Curva ROC , Termodinâmica
5.
Proteins ; 82 Suppl 2: 112-26, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23780644

RESUMO

The article presents an assessment of the ability of the thirty-seven model quality assessment (MQA) methods participating in CASP10 to provide an a priori estimation of the quality of structural models, and of the 67 tertiary structure prediction groups to provide confidence estimates for their predicted coordinates. The assessment of MQA predictors is based on the methods used in previous CASPs, such as correlation between the predicted and observed quality of the models (both at the global and local levels), accuracy of methods in distinguishing between good and bad models as well as good and bad regions within them, and ability to identify the best models in the decoy sets. Several numerical evaluations were used in our analysis for the first time, such as comparison of global and local quality predictors with reference (baseline) predictors and a ROC analysis of the predictors' ability to differentiate between the well and poorly modeled regions. For the evaluation of the reliability of self-assessment of the coordinate errors, we used the correlation between the predicted and observed deviations of the coordinates and a ROC analysis of correctly identified errors in the models. A modified two-stage procedure for testing MQA methods in CASP10 whereby a small number of models spanning the whole range of model accuracy was released first followed by the release of a larger number of models of more uniform quality, allowed a more thorough analysis of abilities and inabilities of different types of methods. Clustering methods were shown to have an advantage over the single- and quasi-single- model methods on the larger datasets. At the same time, the evaluation revealed that the size of the dataset has smaller influence on the global quality assessment scores (for both clustering and nonclustering methods), than its diversity. Narrowing the quality range of the assessed models caused significant decrease in accuracy of ranking for global quality predictors but essentially did not change the results for local predictors. Self-assessment error estimates submitted by the majority of groups were poor overall, with two research groups showing significantly better results than the remaining ones.


Assuntos
Biologia Computacional/métodos , Modelos Estatísticos , Conformação Proteica , Proteínas/química , Modelos Moleculares , Curva ROC , Análise de Sequência de Proteína
6.
Bioinformatics ; 29(7): 953-4, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23396123

RESUMO

SUMMARY: MODexplorer is an integrated tool aimed at exploring the sequence, structural and functional diversity in protein families useful in homology modeling and in analyzing protein families in general. It takes as input either the sequence or the structure of a protein and provides alignments with its homologs along with a variety of structural and functional annotations through an interactive interface. The annotations include sequence conservation, similarity scores, ligand-, DNA- and RNA-binding sites, secondary structure, disorder, crystallographic structure resolution and quality scores of models implied by the alignments to the homologs of known structure. MODexplorer can be used to analyze sequence and structural conservation among the structures of similar proteins, to find structures of homologs solved in different conformational state or with different ligands and to transfer functional annotations. Furthermore, if the structure of the query is not known, MODexplorer can be used to select the modeling templates taking all this information into account and to build a comparative model. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://modorama.biocomputing.it/modexplorer. Website implemented in HTML and JavaScript with all major browsers supported. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas/química , Proteínas/classificação , Software , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Internet , Ligantes , Modelos Moleculares , Anotação de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas/fisiologia , Alinhamento de Sequência , Análise de Sequência de Proteína , Relação Estrutura-Atividade
7.
Bioinformatics ; 29(21): 2722-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23986568

RESUMO

MOTIVATION: The assessment of protein structure prediction techniques requires objective criteria to measure the similarity between a computational model and the experimentally determined reference structure. Conventional similarity measures based on a global superposition of carbon α atoms are strongly influenced by domain motions and do not assess the accuracy of local atomic details in the model. RESULTS: The Local Distance Difference Test (lDDT) is a superposition-free score that evaluates local distance differences of all atoms in a model, including validation of stereochemical plausibility. The reference can be a single structure, or an ensemble of equivalent structures. We demonstrate that lDDT is well suited to assess local model quality, even in the presence of domain movements, while maintaining good correlation with global measures. These properties make lDDT a robust tool for the automated assessment of structure prediction servers without manual intervention. AVAILABILITY AND IMPLEMENTATION: Source code, binaries for Linux and MacOSX, and an interactive web server are available at http://swissmodel.expasy.org/lddt. CONTACT: torsten.schwede@unibas.ch. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Modelos Moleculares , Conformação Proteica , Biologia Computacional/métodos , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Software , Estereoisomerismo
8.
Bioinformatics ; 28(7): 1038-9, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22308148

RESUMO

SUMMARY: MODalign is an interactive web-based tool aimed at helping protein structure modelers to inspect and manually modify the alignment between the sequences of a target protein and of its template(s). It interactively computes, displays and, upon modification of the target-template alignment, updates the multiple sequence alignments of the two protein families, their conservation score, secondary structure and solvent accessibility values, and local quality scores of the implied three-dimensional model(s). Although it has been designed to simplify the target-template alignment step in modeling, it is suitable for all cases where a sequence alignment needs to be inspected in the context of other biological information. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://modorama.biocomputing.it/modalign. Website implemented in HTML and JavaScript with all major browsers supported. CONTACT: jan.kosinski@uniroma1.it.


Assuntos
Internet , Proteínas/química , Alinhamento de Sequência/métodos , Software , Modelos Moleculares , Estrutura Secundária de Proteína , Interface Usuário-Computador
9.
Mol Genet Metab Rep ; 37: 101008, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053929

RESUMO

Background: DNAJC12 co-chaperone protein deficiency has been recently described as a stand-alone metabolic disorder explaining many cases of mild hyperphenylalaninemia (HPA) that are not caused by variants in the PAH gene, which encodes for the hepatic enzyme phenylalanine hydroxylase (PAH), or inGCH1, PTS, QDPR, PCBD1 and DHPR, involved in tetrahydrobiopterin (BH4) biosynthesis and activity. Results: We describe two sisters born to consanguineous parents. The youngest sister (Patient 1), initially asymptomatic, tested positive at NewBorn Screening (NBS) for mild HPA. After variants in the PAH and BH4 related-genes were excluded, we performed DNAJC12 genetic analysis and found a previously described homozygous deletion [NM_021800.3: c.58_59del p.(Gly20Metfs*2)]. The older sister (Patient 2), homozygous for the same variant and exhibiting mild HPA, was diagnosed subsequently and presented with ataxia and repeated falls, upper limb dyskinesia, intentional tremor, and mild intellectual disability. Patient 1 was started on treatment with low Phenylalanine (Phe) diet, BH4, l-3,4-dihydroxyphenylalanine/carbidopa (L-DOPA) and 5-OH-Tryptophan, soon after diagnosis, and despite poor adherence to the dietary regimen, only manifested language impairment at last follow-up (age 5 years and 4 months). Patient 2, who started the same treatment at school age, experienced a minimal progression of neurological symptoms, with some improvement in her motor skills. Conclusions: These two new patients with DNAJC12-associated HPA, in addition to previous reports, point to DNAJC12 deficiency as a new metabolic syndrome that must be considered in patients with unexplained HPA.

10.
Cell Prolif ; 56(4): e13388, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36794373

RESUMO

Metabolic changes of malignant plasma cells (PCs) and adaptation to tumour microenvironment represent one of the hallmarks of multiple myeloma (MM). We previously showed that MM mesenchymal stromal cells are more glycolytic and produce more lactate than healthy counterpart. Hence, we aimed to explore the impact of high lactate concentration on metabolism of tumour PCs and its impact on the efficacy of proteasome inhibitors (PIs). Lactate concentration was performed by colorimetric assay on MM patient's sera. The metabolism of MM cell treated with lactate was assessed by seahorse and real time Polymerase Chain Reaction (PCR). Cytometry was used to evaluate mitochondrial reactive oxygen species (mROS), apoptosis and mitochondrial depolarization. Lactate concentration resulted increased in MM patient's sera. Therefore, PCs were treated with lactate and we observed an increase of oxidative phosphorylation-related genes, mROS and oxygen consumption rate. Lactate supplementation exhibited a significant reduction in cell proliferation and less responsive to PIs. These data were confirmed by pharmacological inhibition of monocarboxylate transporter 1 (MCT1) by AZD3965 which was able to overcame metabolic protective effect of lactate against PIs. Consistently, high levels of circulating lactate caused expansion of Treg and monocytic myeloid derived suppressor cells and such effect was significantly reduced by AZD3965. Overall, these findings showed that targeting lactate trafficking in TME inhibits metabolic rewiring of tumour PCs, lactate-dependent immune evasion and thus improving therapy efficacy.


Assuntos
Mieloma Múltiplo , Simportadores , Humanos , Ácido Láctico/metabolismo , Inibidores de Proteassoma/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Simportadores/genética , Simportadores/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
11.
Antioxidants (Basel) ; 11(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35204157

RESUMO

Breast cancer is the most frequent tumor and the leading cause of cancer deaths in women. In recent years, lactate metabolism and, in particular, its receptor GPR81 have been shown to play a vital role in cancer biology. GPR81 is upregulated in breast cancer and promotes tumor growth by tumor cell-derived lactate. Therefore, the search for possible crosstalk and the involvement of new molecules capable of generating this pathology is always in continuous development. In this study, the relationship between GPR81 and IGFBP6 protein in tumor growth and oxidative stress in the human breast cancer cell line MDA-MB-231 was studied. Cells were treated with lactate or the GPR81 receptor agonist and antagonist 3,5-DHBA and 3-OBA, respectively. In addition, oxidative stress and proliferation were also evaluated in cells challenged with the recombinant IGFBP6 protein. Our data showed that lactate induced cell proliferation and wound healing of the MDA-231 breast cancer cell through the overexpression of both the lactate receptor GPR81 and IGFBP6. The increase in IGFBP6 was able, in turn, to improve the mitochondrial fitness and redox state, as suggested by the reduced levels of mitochondrial ROS production after IGFBP6 treatment, presumably mediated by the increase in the ROS detoxifying genes HMOX1, GSTK1 and NQO1. In conclusion, our data highlight a novel axis between GPR81 and IGFBP6 in MDA-231 cells able to modulate lactate metabolism and oxidative stress. This complex signaling may represent a new therapeutic target for breast cancer.

12.
Sci Rep ; 12(1): 7237, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508575

RESUMO

Since neutrophil extracellular traps formation (NET-osis) can be assessed indirectly by treating healthy neutrophils with blood-derived fluids from patients and then measuring the NETs response, we designed a pilot study to convey high-dimensional cytometry of peripheral blood immune cells and cytokines, combined with clinical features, to understand if NET-osis assessment could be included in the immune risk profiling to early prediction of clinical patterns, disease severity, and viral clearance at 28 days in COVID-19 patients. Immune cells composition of peripheral blood, cytokines concentration and in-vitro NETosis were detected in peripheral blood of 41 consecutive COVID-19 inpatients, including 21 mild breakthrough infections compared to 20 healthy donors, matched for sex and age. Major immune dysregulation in peripheral blood in not-vaccinated COVID-19 patients compared to healthy subjects included: a significant reduction of percentage of unswitched memory B-cells and transitional B-cells; loss of naïve CD3+CD4+CD45RA+ and CD3+CD8+CD45RA+ cells, increase of IL-1ß, IL-17A and IFN-γ. Myeloid compartment was affected as well, due to the increase of classical (CD14++CD16-) and intermediate (CD14++CD16+) monocytes, overexpressing the activation marker CD64, negatively associated to the absolute counts of CD8+ CD45R0+ cells, IFN-γ and IL-6, and expansion of monocytic-like myeloid derived suppressor cells. In not-vaccinated patients who achieved viral clearance by 28 days we found at hospital admission lower absolute counts of effector cells, namely CD8+T cells, CD4+ T-cells and CD4+CD45RO+ T cells. Percentage of in-vitro NET-osis induced by patients' sera and NET-osis density were progressively higher in moderate and severe COVID-19 patients than in mild disease and controls. The percentage of in-vitro induced NET-osis was positively associated to circulating cytokines IL-1ß, IFN-γ and IL-6. In breakthrough COVID-19 infections, characterized by mild clinical course, we observed increased percentage of in-vitro NET-osis, higher CD4+ CD45RO+ and CD8+ CD45RO+ T cells healthy or mild-COVID-19 not-vaccinated patients, reduced by 24 h of treatment with ACE inhibitor ramipril. Taken together our data highlight the role of NETs in orchestrating the complex immune response to SARS-COV-2, that should be considered in a multi-target approach for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , Citocinas , Humanos , Interleucina-6 , Antígenos Comuns de Leucócito , Projetos Piloto , SARS-CoV-2
13.
Phys Chem Chem Phys ; 12(35): 10622-32, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20614070

RESUMO

The dissociation kinetics of germane and its decomposition products were studied determining microcanonical kinetic constants with RRKM theory and integrating the master equation using a stochastic approach. Relevant reaction parameters were calculated through first principles calculations. Structures of reactants and transition states were determined at the B3LYP/aug-cc-pvtz level while energies were computed at the CCSD(T) level and extended to the complete basis set limit. Though similar for many aspects to the kinetics of decomposition of SiH(4), GeH(4) has some peculiar features that indicate a different chemical reactivity. It was found that the main decomposition channel leads to the formation of germylene, GeH(2), which rapidly decomposes to atomic Ge and H(2). The dissociation of GeH(2) to Ge and H(2) is a formally spin forbidden reaction characterized by an activation energy of 160.3 kJ mol(-1) calculated at the minimum energy crossing point between the singlet and triplet states. The intersystem crossing probability was explicitly included in the microcanonical simulations through Landau-Zener theory. It was found that its effect on the reaction rate is almost negligible, both because of the large spin-orbit coupling between the singlet and triplet states and for the fall off conditions prevailing in the examined pressure and temperature ranges. Kinetic constants of the main decomposition channels were determined as a function of pressure and temperature between 0.0013 and 10 bar and 1100 and 1700 K. The high and low pressure kinetic constants for GeH(4) decomposition are 6.4 x 10(13) (T/K)(0.272) exp(-26 700 K/T) and 2.7 x 10(48) (T/K)(-9.05) exp(-31 600 K/T), while those for GeH(2) are 6.02 x 10(12) (T/K)(0.203) exp(-19 660 K/T) and 1.6 x 10(26) (T/K)(-3.06) exp(-21 121 K/T), respectively. A quantitative agreement with experimental data for GeH(4) decomposition could be obtained adopting a downward energy transfer parameter of 340 x (T/298 K)(0.85) cm(-1) in the collisional model, and assuming that atomic Ge can react fast with GeH(4) to form Ge(2)H(2) and H(2), thus enhancing the germane decomposition rate and suggesting that a fast kinetic route leading to the Ge(2)H(2) production can be active in the gas phase.

14.
Front Oncol ; 10: 604143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33409153

RESUMO

The combined derangements in mitochondria network, function and dynamics can affect metabolism and ATP production, redox homeostasis and apoptosis triggering, contributing to cancer development in many different complex ways. In hematological malignancies, there is a strong relationship between cellular metabolism, mitochondrial bioenergetics, interconnections with supportive microenvironment and drug resistance. Lymphoma and chronic lymphocytic leukemia cells, e.g., adapt to intrinsic oxidative stress by increasing mitochondrial biogenesis. In other hematological disorders such as myeloma, on the contrary, bioenergetics changes, associated to increased mitochondrial fitness, derive from the adaptive response to drug-induced stress. In the bone marrow niche, a reverse Warburg effect has been recently described, consisting in metabolic changes occurring in stromal cells in the attempt to metabolically support adjacent cancer cells. Moreover, a physiological dynamic, based on mitochondria transfer, between tumor cells and their supporting stromal microenvironment has been described to sustain oxidative stress associated to proteostasis maintenance in multiple myeloma and leukemia. Increased mitochondrial biogenesis of tumor cells associated to acquisition of new mitochondria transferred by mesenchymal stromal cells results in augmented ATP production through increased oxidative phosphorylation (OX-PHOS), higher drug resistance, and resurgence after treatment. Accordingly, targeting mitochondrial biogenesis, electron transfer, mitochondrial DNA replication, or mitochondrial fatty acid transport increases therapy efficacy. In this review, we summarize selected examples of the mitochondrial derangements in hematological malignancies, which provide metabolic adaptation and apoptosis resistance, also supported by the crosstalk with tumor microenvironment. This field promises a rational design to improve target-therapy including the metabolic phenotype.

15.
Redox Biol ; 36: 101611, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32863212

RESUMO

Iron plays a major role in multiple processes involved in cell homeostasis such as metabolism, respiration and DNA synthesis. Cancer cells exhibit pronounced iron retention as compared to healthy counterpart. This phenomenon also occurs in multiple myeloma (MM), a hematological malignancy characterized by terminally differentiated plasma cells (PCs), in which serum ferritin levels have been reported as a negative prognostic marker. The aim of current study is to evaluate the potential role of iron metabolism in promoting drug resistance in myeloma cancer cells with particular regard to the interactions between PCs and tumor-associated macrophages (TAMs) as a source of iron. Our data showed that myeloma cell lines are able to intake and accumulate iron and thus, increasing their scavenger antioxidant-related genes and mitochondrial mass. We further demonstrated that PCs pre-treated with ferric ammonium citrate (FAC) decreased bortezomib (BTZ)-induced apoptosis in vitro and successfully engrafted in zebrafish larvae treated with BTZ. Treating human macrophages with FAC, we observed a switch toward a M2-like phenotype associated with an increased expression of anti-inflammatory markers such as ARG1, suggesting the establishment of an iron-mediated immune suppressive tumor microenvironment favouring myeloma growth. Using mfap4:tomato mutant zebrafish larvae, we further confirmed the increase of PCs-monocytes interactions after FAC treatment which favour BTZ-resistance. Taken together our data support the hypothesis that targeting iron trafficking in myeloma microenvironment may represent a promising strategy to counteract a tumor-supporting milieu and drug resistance.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Animais , Antineoplásicos/farmacologia , Apoptose , Bortezomib/farmacologia , Proteínas de Transporte , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteínas da Matriz Extracelular , Glicoproteínas/farmacologia , Glicoproteínas/uso terapêutico , Humanos , Ferro/farmacologia , Macrófagos , Mieloma Múltiplo/tratamento farmacológico , Microambiente Tumoral , Peixe-Zebra
16.
Cancers (Basel) ; 12(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707760

RESUMO

Multiple myeloma (MM) is a B-cell malignancy requiring inflammatory microenvironment signals for cell survival and proliferation. Despite improvements in pharmacological tools, MM remains incurable mainly because of drug resistance. The present study aimed to investigate the implication of Toll-like receptor 4 (TLR4) as the potential mechanism of bortezomib (BTZ) resistance. We found that TLR4 activation induced mitochondrial biogenesis and increased mitochondrial mass in human MM cell lines. Moreover, TLR4 signaling was activated after BTZ exposure and was increased in BTZ-resistant U266 (U266-R) cells. A combination of BTZ with TAK-242, a selective TLR4 inhibitor, overcame drug resistance through the generation of higher and extended oxidative stress, strong mitochondrial depolarization and severe impairment of mitochondrial fitness which in turn caused cell energy crisis and activated mitophagy and apoptosis. We further confirmed the efficacy of a TAK-242/BTZ combination in plasma cells from refractory myeloma patients. Consistently, inhibition of TLR4 increased BTZ-induced mitochondrial depolarization, restoring pharmacological response. Taken together, these findings indicate that TLR4 signaling acts as a stress-responsive mechanism protecting mitochondria during BTZ exposure, sustaining mitochondrial metabolism and promoting drug resistance. Inhibition of TLR4 could be therefore be a possible target in patients with refractory MM to overcome BTZ resistance.

17.
Biomolecules ; 10(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365811

RESUMO

The proteasome inhibitor bortezomib (BTZ) has emerged as an effective drug for the treatment of multiple myeloma even though many patients relapse from BTZ therapy. The present study investigated the metabolic pathways underlying the acquisition of bortezomib resistance in multiple myeloma. We used two different clones of multiple myeloma cell lines exhibiting different sensitivities to BTZ (U266 and U266-R) and compared them in terms of metabolic profile, mitochondrial fitness and redox balance homeostasis capacity. Our results showed that the BTZ-resistant clone (U266-R) presented increased glycosylated UDP-derivatives when compared to BTZ-sensitive cells (U266), thus also suggesting higher activities of the hexosamine biosynthetic pathway (HBP), regulating not only protein O- and N-glycosylation but also mitochondrial functions. Notably, U266-R displayed increased mitochondrial biogenesis and mitochondrial dynamics associated with stronger antioxidant defenses. Furthermore, U266-R maintained a significantly higher concentration of substrates for protein glycosylation when compared to U266, particularly for UDP-GlcNac, thus further suggesting the importance of glycosylation in the BTZ pharmacological response. Moreover, BTZ-treated U266-R showed significantly higher ATP/ADP ratios and levels of ECP and also exhibited increased mitochondrial fitness and antioxidant response. In conclusions, our findings suggest that the HBP may play a major role in mitochondrial fitness, driving BTZ resistance in multiple myeloma and thus representing a possible target for new drug development for BTZ-resistant patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético , Mitocôndrias/metabolismo , Mieloma Múltiplo/metabolismo , Processamento de Proteína Pós-Traducional , Antineoplásicos/toxicidade , Bortezomib/toxicidade , Linhagem Celular Tumoral , Glicosilação , Hexosaminas/metabolismo , Humanos , Dinâmica Mitocondrial , Estresse Oxidativo
18.
Cancers (Basel) ; 12(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019102

RESUMO

Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of plasma cells (PC) in the bone marrow (BM), leading to bone loss and BM failure. Osteolytic bone disease is a common manifestation observed in MM patients and represents the most severe cause of morbidity, leading to progressive skeletal damage and disabilities. Pathogenetic mechanisms of MM bone disease are closely linked to PCs and osteoclast (OCs) hyperactivity, coupled with defective osteoblasts (OBs) function that is unable to counteract bone resorption. The aim of the present study was to investigate the effects of Ixazomib, a third-generation proteasome inhibitor, on osteoclastogenesis and osteogenic differentiation. We found that Ixazomib was able to reduce differentiation of human monocytes into OCs and to inhibit the expression of OC markers when added to the OC medium. Concurrently, Ixazomib was able to stimulate osteogenic differentiation of human mesenchymal stromal cells (MSCs), increasing osteogenic markers, either alone or in combination with the osteogenic medium. Given the key role of Sonic Hedgehog (SHH) signaling in bone homeostasis, we further investigated Ixazomib-induced SHH pathway activation. This set of experiments showed that Ixazomib, but not Bortezomib, was able to bind the Smoothened (SMO) receptor leading to nuclear translocation of GLI1 in human MSCs. Moreover, we demonstrated that PCs act as GLI1 suppressors on MSCs, thus reducing the potential of MSCs to differentiate in OBs. In conclusion, our data demonstrated that Ixazomib regulates bone remodeling by decreasing osteoclastogenesis and prompting osteoblast differentiation via the canonical SHH signaling pathway activation, thus, representing a promising therapeutic option to improve the complex pathological condition of MM patients.

19.
J Chem Phys ; 130(7): 074108, 2009 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-19239285

RESUMO

The unimolecular reaction of decomposition of SiH(4) to SiH(2) and H(2) and the bimolecular reaction between SiH(3) and H were investigated by solving the master equation using a stochastic kinetic Monte Carlo (KMC) approach. Rice-Ramsperger-Kassel-Marcus (RRKM) microcanonical kinetic constants were determined using classic transition state theory for the reaction of decomposition to SiH(2) and H(2) and microcanonical J-resolved variational transition state theory for decomposition to SiH(3) and H. Structures of reactants and transition states were determined at the B3LYP/aug-cc-pVTZ level, while energies were calculated at the CCSD(T) level and extended to the complete basis set limit. Unimolecular kinetic constants were directly computed from the results of KMC simulations using a new algorithm while bimolecular rate constants were calculated from stochastic reaction probabilities. The simulation results are in good agreement with experimental data for the unimolecular decomposition of SiH(4), which is in the falloff regime in the temperature (1100-1700 K) and pressure (10(-3)-10(1) bar) range investigated. The calculated high and low pressure limit kinetic constants for SiH(4) decomposition to SiH(2) and H(2) are k(infinity)=1.2x10(13)T(0.477) exp(-28 988/T) and k(0)=1.4x10(42)T(-7.245) exp(-33 153/T). The calculated Troe falloff parameter is F(cent)=0.979 exp(-T/1427)+0.021 exp(T/1489). The rate of the bimolecular reaction between SiH(3) and H to give SiH(2) and H(2) is pressure independent between 10(-3) and 100 bar and slightly temperature dependent between 300 and 2000 K. The kinetic constant interpolated in this temperature and pressure range is 6.9x10(11)T(0.736) exp(134.8/T(K)) cm(3) mol(-1) s(-1), which is among the highest values proposed in the literature for this process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA