Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Blood ; 136(18): 2065-2079, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32556153

RESUMO

Macrophage antibody (Ab)-dependent cellular phagocytosis (ADCP) is a major cytotoxic mechanism for both therapeutic unconjugated monoclonal Abs (mAbs) such as rituximab and Ab-induced hemolytic anemia and immune thrombocytopenia. Here, we studied the mechanisms controlling the rate and capacity of macrophages to carry out ADCP in settings of high target/effector cell ratios, such as those seen in patients with circulating tumor burden in leukemic phase disease. Using quantitative live-cell imaging of primary human and mouse macrophages, we found that, upon initial challenge with mAb-opsonized lymphocytes, macrophages underwent a brief burst (<1 hour) of rapid phagocytosis, which was then invariably followed by a sharp reduction in phagocytic activity that could persist for days. This previously unknown refractory period of ADCP, or hypophagia, was observed in all macrophage, mAb, and target cell conditions tested in vitro and was also seen in vivo in Kupffer cells from mice induced to undergo successive rounds of αCD20 mAb-dependent clearance of circulating B cells. Importantly, hypophagia had no effect on Ab-independent phagocytosis and did not alter macrophage viability. In mechanistic studies, we found that the rapid loss of activating Fc receptors from the surface and their subsequent proteolytic degradation were the primary mechanisms responsible for the loss of ADCP activity in hypophagia. These data suggest hypophagia is a critical limiting step in macrophage-mediated clearance of cells via ADCP, and understanding such limitations to innate immune system cytotoxic capacity will aid in the development of mAb regimens that could optimize ADCP and improve patient outcome.


Assuntos
Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Imunidade Inata/efeitos dos fármacos , Macrófagos/patologia , Fagócitos/imunologia , Fagocitose , Rituximab/farmacologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagócitos/efeitos dos fármacos
2.
Cancer Res ; 84(11): 1764-1780, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38471099

RESUMO

The tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) plays a key role in tumor progression and response to therapy. The dense PDAC stroma causes hypovascularity, which leads to hypoxia. Here, we showed that hypoxia drives long-lasting epithelial-mesenchymal transition (EMT) in PDAC primarily through a positive-feedback histone methylation-MAPK signaling axis. Transformed cells preferentially underwent EMT in hypoxic tumor regions in multiple model systems. Hypoxia drove a cell autonomous EMT in PDAC cells, which, unlike EMT in response to growth factors, could last for weeks. Furthermore, hypoxia reduced histone demethylase KDM2A activity, suppressed PP2 family phosphatase expression, and activated MAPKs to post-translationally stabilize histone methyltransferase NSD2, leading to an H3K36me2-dependent EMT in which hypoxia-inducible factors played only a supporting role. Hypoxia-driven EMT could be antagonized in vivo by combinations of MAPK inhibitors. Collectively, these results suggest that hypoxia promotes durable EMT in PDAC by inducing a histone methylation-MAPK axis that can be effectively targeted with multidrug therapies, providing a potential strategy for overcoming chemoresistance. SIGNIFICANCE: Integrated regulation of histone methylation and MAPK signaling by the low-oxygen environment of pancreatic cancer drives long-lasting EMT that promotes chemoresistance and shortens patient survival and that can be pharmacologically inhibited. See related commentary by Wirth and Schneider, p. 1739.


Assuntos
Carcinoma Ductal Pancreático , Transição Epitelial-Mesenquimal , Histonas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Camundongos , Histonas/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Animais , Metilação , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Microambiente Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Hipóxia Celular , Hipóxia Tumoral , Hipóxia/metabolismo , Proteínas F-Box , Histona Desmetilases com o Domínio Jumonji
3.
Nat Commun ; 15(1): 5194, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890271

RESUMO

Resistance to clinical malaria takes years to develop even in hyperendemic regions and sterilizing immunity has rarely been observed. To evaluate the maturation of the host response against controlled repeat exposures to P. falciparum (Pf) NF54 strain-infected mosquitoes, we systematically monitored malaria-naïve participants through an initial exposure to uninfected mosquitoes and 4 subsequent homologous exposures to Pf-infected mosquitoes over 21 months (n = 8 males) (ClinicalTrials.gov# NCT03014258). The primary outcome was to determine whether protective immunity against parasite infection develops following repeat CHMI and the secondary outcomes were to track the clinical signs and symptoms of malaria and anti-Pf antibody development following repeat CHMI. After two exposures, time to blood stage patency increases significantly and the number of reported symptoms decreases indicating the development of clinical tolerance. The time to patency correlates positively with both anti-Pf circumsporozoite protein (CSP) IgG and CD8 + CD69+ effector memory T cell levels consistent with partial pre-erythrocytic immunity. IFNγ levels decrease significantly during the participants' second exposure to high blood stage parasitemia and could contribute to the decrease in symptoms. In contrast, CD4-CD8 + T cells expressing CXCR5 and the inhibitory receptor, PD-1, increase significantly after subsequent Pf exposures, possibly dampening the memory response and interfering with the generation of robust sterilizing immunity.


Assuntos
Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/sangue , Plasmodium falciparum/imunologia , Masculino , Proteínas de Protozoários/imunologia , Animais , Adulto , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Interferon gama/metabolismo , Interferon gama/imunologia , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Adulto Jovem , Linfócitos T CD8-Positivos/imunologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/imunologia , Anopheles/parasitologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-35280700

RESUMO

The thyroid hormone receptor (TR) is essential for the proper regulation of metabolism and development, as it regulates gene expression in response to thyroid hormone. Nuclear localization signals (NLSs) and nuclear export signals (NESs) allow for TR transport into and out of the nucleus, respectively. Previous research suggests that nuclear import, nuclear retention, and nuclear export of TR are associated with modulation of gene expression, the alteration of which can contribute to various diseases. Here, we examined the impact of cancer-associated mutations on TR localization patterns as a way of analyzing key structural components of TR and to further explore the correlation between TR trafficking, misfolding, and disease. Through mammalian cell transfection of expression plasmids for green fluorescent protein (GFP) and mCherry-tagged TRα1 and quantitative fluorescence microscopy, we examined particular groups of TRα1 mutations that were observed in patients with hepatocellular carcinoma, renal cell carcinoma, and thyroid cancer, and are associated with NLSs and NESs of TRα1. We also investigated structural alterations of the mutants by in silico modeling. Our results show striking shifts towards a more cytoplasmic localization for many of the mutants and an increased tendency to form cytosolic and nuclear aggregates.

5.
Nat Commun ; 11(1): 6159, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268801

RESUMO

Malaria is spread by the transmission of sexual stage parasites, called gametocytes. However, with Plasmodium falciparum, gametocytes can only be detected in peripheral blood when they are mature and transmissible to a mosquito, which complicates control efforts. Here, we identify the set of genes overexpressed in patient blood samples with high levels of gametocyte-committed ring stage parasites. Expression of all 18 genes is regulated by transcription factor AP2-G, which is required for gametocytogenesis. We select three genes, not expressed in mature gametocytes, to develop as biomarkers. All three biomarkers we validate in vitro using 6 different parasite lines and develop an algorithm that predicts gametocyte production in ex vivo samples and volunteer infection studies. The biomarkers are also sensitive enough to monitor gametocyte production in asymptomatic P. falciparum carriers allowing early detection and treatment of infectious reservoirs, as well as the in vivo analysis of factors that modulate sexual conversion.


Assuntos
Estágios do Ciclo de Vida/genética , Malária Falciparum/transmissão , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Fator de Transcrição AP-2/genética , Transcriptoma , Animais , Biomarcadores/sangue , Portador Sadio , Eritrócitos/parasitologia , Gametogênese/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Humanos , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Anotação de Sequência Molecular , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Fator de Transcrição AP-2/metabolismo
6.
Nat Commun ; 10(1): 2140, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086187

RESUMO

Plasmodium sexual differentiation is required for malaria transmission, yet much remains unknown about its regulation. Here, we quantify early gametocyte-committed ring (gc-ring) stage, P. falciparum parasites in 260 uncomplicated malaria patient blood samples 10 days before maturation to transmissible stage V gametocytes using a gametocyte conversion assay (GCA). Seventy six percent of the samples have gc-rings, but the ratio of gametocyte to asexual-committed rings (GCR) varies widely (0-78%). GCR correlates positively with parasitemia and is negatively influenced by fever, not hematocrit, age or leukocyte counts. Higher expression levels of GDV1-dependent genes, ap2-g, msrp1 and gexp5, as well as a gdv1 allele encoding H217 are associated with high GCR, while high plasma lysophosphatidylcholine levels are associated with low GCR in the second study year. The results provide a view of sexual differentiation in the field and suggest key regulatory roles for clinical factors and gdv1 in gametocytogenesis in vivo.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/fisiologia , Diferenciação Sexual/fisiologia , Fatores Etários , Criança , Pré-Escolar , Feminino , Gametogênese/fisiologia , Genes de Protozoários/fisiologia , Gana , Humanos , Lisofosfatidilcolinas/sangue , Malária Falciparum/sangue , Masculino , Parasitemia/parasitologia , Plasmodium falciparum/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA