Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol ; 37(2): 237-244, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34730869

RESUMO

Titanium dioxide (TiO2 ) is generally regarded as a nontoxic and nongenotoxic white mineral, which is mainly applied in the manufacture of paper, paint, plastic, sunscreen lotion and other products. Recently, TiO2 nanoparticles (TiO2 NPs) have been demonstrated to cause chronic inflammation and lung tumor formation in rats, which may be associated with the particle size of TiO2 . Considering the important role of activator protein-1 (AP-1) in regulating multiple genes involved in the cell proliferation and inflammation and the induction of neoplastic transformation, we aimed to evaluate the potency of TiO2 NPs (≤ 20 nm) on the activation of AP-1 signaling pathway and the generation of reactive oxygen species (ROS) in a mouse epidermal cell line, JB6 cells. MTT, electron spin resonance (ESR), AP-1 luciferase activity assay in vitro and in vivo, and Western blotting assay were used to clarify this problem. Our results indicated that TiO2 NPs dose-dependently caused the hydroxyl radical (·OH) generation and sequentially increased the AP-1 activity in JB6 cells. Using AP-1-luciferase reporter transgenic mice models, an obvious increased AP-1 activity was detected in dermal tissue after exposure to TiO2 NPs for 24 h. Interestingly, TiO2 NPs increased the AP-1 activity via stimulating the expression of mitogen-activated protein kinases (MAPKs) family members, including extracellular signal-regulated protein kinases (ERKs), p38 kinase, and C-Jun N-terminal kinases (JNKs). Of note, the AP-1 activation induced by TiO2 NPs could be blocked by specific inhibitors (SB203580, PD98059, and SP 600125, respectively) that inhibit ERKs and p38 kinase but not JNKs. These findings indicate that ROS generation is involved in TiO2 NPs-induced AP-1 activation mediated by MAPKs signal pathway.


Assuntos
Nanopartículas , Fator de Transcrição AP-1 , Animais , MAP Quinases Reguladas por Sinal Extracelular , Proteínas Quinases JNK Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases , Camundongos , Nanopartículas/toxicidade , Ratos , Espécies Reativas de Oxigênio , Titânio , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Toxicol Appl Pharmacol ; 331: 85-93, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28552777

RESUMO

Indium-tin oxide (ITO) is used to produce flat panel displays and several other technology products. Composed of 90% indium oxide (In2O3) and 10% tin oxide (SnO2) by weight, ITO is synthesized under conditions of high heat via a process known as sintering. Indium lung disease, a recently recognized occupational illness, is characterized by pulmonary alveolar proteinosis, fibrosis, and emphysema. Murine macrophage (RAW 264.7) and epidermal (JB6) cells stably transfected with AP-1 to study tumor promoting potential, were used to differentiate between the toxicological profiles of sintered ITO (SITO) and unsintered mixture (UITO). We hypothesized that sintering would play a key role in free radical generation and cytotoxicity. Exposure of cells to both UITO and SITO caused a time and dose dependent decrease of the viability of cells. Intracellular ROS generation was inversely related to the dose of both UITO and SITO, a direct reflection of the decreased number of viable RAW 264.7 and JB6/AP-1 cells observed at higher concentrations. Electron spin resonance showed significantly increased hydroxyl radical (OH) generation in cells exposed to UITO compared to SITO. This is different from LDH release, which showed that SITO caused significantly increased damage to the cell membrane compared to UITO. Lastly, the JB6/AP-1 cell line did not show activation of the AP-1 pathway. Our results highlight both the differences in the mechanisms of cytotoxicity and the consistent adverse effects associated with UITO and SITO exposure.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Compostos de Estanho/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/fisiologia , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Epiderme/metabolismo , Macrófagos/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo
3.
Toxicol Res (Camb) ; 7(3): 396-407, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30090589

RESUMO

To explore the health effects of multi-heavy metal exposure, Sprague Dawley (SD) rats were orally given one dose of heavy metal mixtures (HMMs). The eight most common detectable heavy metals in Ningbo area are zinc (Zn), copper (Cu), manganese (Mn), chromium (Cr), nickel (Ni), cadmium (Cd), lead (Pb) and mercury (Hg). In this study, mixtures of these eight heavy metals were prepared using the compounds zinc sulfate heptahydrate, cupric sulfate, manganese dichloride, potassium dichromate, nickel dichloride, cadmium dichloride, lead acetate, and methyl mercury chloride with ion mass proportions of 1070.0, 312.6, 173.1, 82.6, 30.0, 13.3, 6.6, and 1.0, respectively. The rats were randomly divided into four groups. Beside the control group, each rat received a corresponding dose of HMMs 215, 464 or 1000 mg per kg body weight (bwt), respectively. The rats were observed for 4 weeks. During the last week of observation, the Morris water maze test was used to investigate spatial learning and memory in the treated rats. The rats were exsanguinated under complete chloral hydrate anesthesia and organ coefficients were measured. Biochemical tests of blood and serum samples were carried out. The results showed abnormalities in the hematological system, decreased renal function, hepatic injury and disturbances in the electrolyte balance of the rats treated with a high dose of HMMs. Death of some rats was also observed. This paper analyzed how a one-time high dose oral administration of HMMs induced systemic toxicity.

4.
Artigo em Inglês | MEDLINE | ID: mdl-28974026

RESUMO

The systemic toxicity of different combinations of heavy metal mixtures (HMMs) was studied according to equivalent proportions of the eight most common detectable heavy metals found in fish consumption in the Ningbo area of China. The ion mass proportions of Zn, Cu, Mn, Cr, Ni, Cd, Pb, and Hg were 1070.0, 312.6, 173.1, 82.6, 30.0, 13.3, 6.6, and 1.0, respectively. In this study, 10 experimental groups were set as follows: M8 (Pb + Cd + Hg + Ni + Cu + Zn + Mn + Cr); M5 (Pb + Cd + Hg + Ni + Cr); M4A (Pb + Cd + Hg + Ni); M4B (Cu + Zn + Mn + Cr); M3 (Cu + Zn + Mn); Cr; Cu; Zn; Mn; and control. Sprague Dawley (SD) rats were orally treated with a single dose of each group every three days (10 times in total) for 34 days. After Morris water maze test, blood and tissue samples were collected to obtain biochemical, histopathological and western blot analysis. Results show abnormalities could be observed in different treatment groups, the M4B combination had the most significant change compared to all other groups. In conclusion, combination HMMs may have adverse effects on the hematologic, hepatic, renal and neurobehavioral function, and may also disturb electrolyte and lipid balance. Why M4B combination generated much higher toxic effects than any other combination mixtures or individual heavy metal needs to be further evaluated.


Assuntos
Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Administração Oral , Animais , Interações Medicamentosas , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Subaguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA