Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nanotechnology ; 34(24)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827699

RESUMO

Graphene oxide (GO) and reduced graphene oxide have outstanding qualities that could be exploited as reinforcement and antibacterial agents in a plethora of biomedical applications. In this contribution, it is reported the deployment of a polyacrylamide GO-hydrogel composite (GO@pAAm) which was photo-converted and structured by ultra-short laser irradiation using a direct laser writing (DLW) approach. The materials were characterized by Fourier Transform Infrared spectroscopy, scanning electron microscopy and confocal microscopy. The laser structure generates a multi-photo-induced effect: surface foaming and patterning, microdomains with enhanced selective water-swelling and effective GO photo-reduction. A first laser scan seems likely to induce the photo-reduction of GO and subsequent laser pulses trigger the structure/foaming. The photo-reduction of GO is evidenced by Raman spectroscopy by the relatively changing intensities of the D to G signals. Macroscopically by an increase in conductivity (decrease in sheet resistance fromRS-GO@pAAm= 304 ± 20 kΩ sq-1toRS-rGO@pAAm-DLW= 27 ± 8 kΩ sq-1) suggesting a reduction of the material measured by 4-Point-Probe.

2.
Reprod Domest Anim ; 57(2): 228-232, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33908090

RESUMO

We report the development of a hydrogel-based approach to select bull spermatozoa, a crucial step for successful assisted reproductive techniques (ARTs). Hyaluronic acid (HA) semi-interpenetrated N-isopropylacrylamide (PNIPAM) co-20% N-Tris (hydroxymethyl) methyl acrylamide (HMA) hydrogels were synthetized on glass surfaces and cultured in presence of frozen-thawed bull spermatozoa. A fraction of motile bull spermatozoa population strongly attached to hydrogels and was partially released by treatment with hyaluronidase. Fifty-nine (59 ± 7.24) per cent of sperm cells attached to PNIPAM-HMA-HA hydrogels and 31.16 ± 4.81% of them were released upon treatment with medium containing hyaluronidase. This attached-released sperm fraction has acceptable characteristics of progressive motility (50.0 ± 5.0%), vigour (4), high viability (58.7 ± 11.7%) and low percentage of acrosome reacted spermatozoa (23.36 ± 4.1%). Our findings indicate that PNIPAM-HMA-HA hydrogels are non-toxic and allow the selection of high-quality sperm cells for ART.


Assuntos
Preservação do Sêmen , Motilidade dos Espermatozoides , Acrossomo , Animais , Bovinos , Criopreservação/veterinária , Ácido Hialurônico , Hidrogéis , Masculino , Preservação do Sêmen/veterinária , Espermatozoides
3.
Soft Matter ; 15(40): 8059-8066, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31549699

RESUMO

Antimicrobial nanocomposites (NCs) are being used as an alternative antibacterial therapy for killing antibiotic-resistant pathogenic bacteria. The NCs are made of Ag nanoparticles (AgNPs) inside biocompatible hydrogel matrixes. The NCs were synthesized by the absorption of AgNO3 solution into a hydrogel matrix, followed by UV light irradiation, without using additional toxic reactants. The hydrogels used as matrixes are based on N-isopropylacrylamide (NIPAM) and copolymers with different functional groups: 2-acrylamide-2-methylpropanesulfonic acid (AMPS), N-hydroxyethylacrylamide (HEAA) and (3-acrylamidepropil)trimethylammonium chloride (APTMAC). Neutral, anionic and cationic groups were added to the matrixes in order to study their effects on the release of antibacterial species. The NCs were characterized by UV-visible spectroscopy and transmission electronic microscopy. The kinetics of the release of Ag+ ions from the NCs were followed by UV-visible spectroscopy at 300 nm. Biological experiments were based on the plate count method and agar diffusion testing against Pseudomonas aeruginosa. The bacterial death rate using the NCs is higher than when PNIPAM and nanoparticles in solution are used and seems to be related to the large amount of AgNPs contained inside the gels. In all cases, inhibition and diffusion halos were observed upon the exposure of bacterial cultures on agar to NC discs. The presence of both halos confirmed the bactericidal and bacteriostatic effects of the NCs. The reusability (prolonged use) of the materials was demonstrated until the Ag-NP content was exhausted. The NCs with a higher antibacterial capacity are based on a PNIPAM-co-6%APTMAC matrix. It was demonstrated that these NC materials have the capacity to maintain an aseptic/antiseptic zone for 7 to 15 days.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Hidrogéis/química , Nanopartículas Metálicas/química , Nanocompostos/química , Prata/química , Acrilamidas/química , Cinética , Testes de Sensibilidade Microbiana , Processos Fotoquímicos , Pseudomonas aeruginosa/efeitos dos fármacos
4.
Nanotechnology ; 29(12): 125604, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29355838

RESUMO

Polyaniline nanoparticles (PANI-NPs) were easily obtained applying the solvent displacement method by using N-methylpyrrolidone (NMP) as good solvent and water as poor solvent. Different polymers such as polyvinylpyrrolidone (PVP), chondroitin sulfate (ChS), polyvinyl alcohol (PVA), and polyacrylic acid (PAA) were used as stabilizers. Dynamic light scattering and scanning electron microscopy corroborated the size and morphology of the formed NPs. It was demonstrated that the size of nanoparticles could be controlled by setting the concentration of PANI in NMP, the NMP to water ratio, and the stabilizer's nature. The functionalization and fluorescence of NPs were checked by spectroscopic techniques. Since polyaniline show only weak intrinsic luminescence, fluorescent groups were linked to the polyaniline chains prior to the nanoparticle formation using a linker. Polyaniline chains were functionalized by nucleophilic addition of cysteamine trough the thiol group thereby incorporating pendant primary aliphatic amine groups to the polyaniline backbone. Then, dansyl chloride (DNS-Cl), which could act as an extrinsic chromophore, was conjugated to the amine pendant groups. Later, the functionalized polyaniline was used to produce nanoparticles by solvent displacement. The optical and functional properties of fluorescent nanoparticles (F-PANI-NPs) were determined. F-PANI-NPs in the conductive state (pH < 4) are able to absorb near infrared radiation (NIR) creating a photothermal effect in an aqueous medium. Thus, multifunctional nanoparticles are obtained. The application of NIR on a F-PANI-NPs dispersion in contact with Pseudomonas aeruginosa causes bacterial death. Therefore, the F-PANI-NPs could be tracked and applied to inhibit different diseases caused by pathogenic microorganisms and resistant to antibiotics as well as a new disinfection method to surgical materials.


Assuntos
Compostos de Anilina/síntese química , Bactérias/isolamento & purificação , Viabilidade Microbiana , Nanopartículas/química , Tamanho da Partícula , Fototerapia , Solventes/química , Compostos de Anilina/química , Difusão Dinâmica da Luz , Hidrodinâmica , Concentração de Íons de Hidrogênio , Nanopartículas/ultraestrutura , Pirrolidinonas/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
5.
Langmuir ; 32(35): 8951-9, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27529799

RESUMO

Electrospun submicrometer-sized poly(ε-caprolactone) (PCL) meshes and nanosized multiwalled carbon nanotubes (MWCNTs) were used as a template for preparing porous and interconnected inorganic-organic hybrid materials composed of CaCO3. Herein, we describe the proportion and incorporation method of submicrometer-sized plasma-treated PCL meshes over areas >1 mm(2) with CaCO3 using three crystallization methods including the use of poly(acrylic acid) (PAA). We found that flexible and rigid acid-functionalized MWCNTs showed a clear capacity and effects to penetrate calcite particles. MWCNTs interacted differently with the individual growth planes of CaCO3, indicating that fibers can undergo changes depending on sulfonate or carboxylate groups, adopt different orientations in solution, and thereby elicit changes in CaCO3 morphology. In summary, the use of PCL and acidic MWCNT fibers as an additive for substrate templates and experimental crystallization provides a viable approach for studying various aspects of biomineralization, including the production of controlled particles, control of porosities, and defined morphologies at microscale and nanoscale levels.

6.
Ecotoxicol Environ Saf ; 114: 84-92, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25617831

RESUMO

With the rapid growth of nanotechnology and the applications of nanoparticles, environmental exposure to these particles is increasing. However, their impact in human and environmental health is not well studied. Anurans, with life stage comprising embryos, tadpoles and adults, have an extremely permeable skin which makes them excellent indicators of environmental health. This study evaluated the acute toxicity effects of polyaniline nanoparticles (PANI-Np) in different dispersant on embryos and larvae of Rhinella arenarum. The results showed that LC50 of PANI-Np dispersed in polyvinylpyrrolidone (PVP) were 1,500 mg/L, while LC50 by PANI-Np dispersed in PVP+PNIPAM (polyN-isopropylacrilamide) showed a highest toxicity (1,170 mg/L). The embryo teratogenicity increased with increasing exposure concentration in both kinds of PANI-Np although in PANI-Np1, there is an increased teratogenic effect associated with the polymer stabilizer PVP.


Assuntos
Compostos de Anilina/toxicidade , Nanopartículas/toxicidade , Teratogênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bufo arenarum , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Modelos Animais
7.
Nanotechnology ; 25(49): 495602, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25407569

RESUMO

Conductive polyaniline nanoparticles (PANI NPs) are synthesized by oxidation of aniline with persulfate in acid media, in the presence of polymeric stabilizers: polyvinilpyrrolidone (PVP), poly(N-isopropylacrylamide) (PNIPAM), and hydroxylpropylcellulose (HPC). It is observed that the size of the nanoparticles obtained depends on the polymeric stabilizer used, suggesting a mechanism where the aggregation of polyaniline molecules is arrested by adsorption of the polymeric stabilizer. Indeed, polymerization in the presence of a mixture of two polymers having different stabilizing capacity (PVP and PNIPAM) allows tuning of the size of the nanoparticles. Stabilization with biocompatible PVP, HPC and PNIPAM allows use of the nanoparticle dispersions in biological applications. The nanoparticles stabilized by thermosensitive polymers (PNIPAM and HPC) aggregate when the temperature exceeds the phase transition (coil to globule) temperature of each stabilizer (Tpt = 32 °C for PNIPAM or Tpt = 42 °C for HPC). This result suggests that an extended coil form of the polymeric stabilizer is necessary to avoid aggregation. The dispersions are reversibly restored when the temperature is lowered below Tpt. In that way, the effect could be used to separate the nanoparticles from soluble contaminants. On the other hand, the PANI NPs stabilized with PVP are unaffected by the temperature change. UV-visible spectroscopy measurements show that the nanoparticle dispersion changes their spectra with the pH of the external solution, suggesting that small molecules can easily penetrate the stabilizer shell. Near infrared radiation is absorbed by PANI NPs causing an increase of their temperature which induces the collapse of the thermosensitive polymer shell and aggregation of the NPs. The effect reveals that it is possible to locally heat the nanoparticles, a phenomenon that can be used to destroy tumor cells in cancer therapy or to dissolve protein aggregates of neurodegenerative diseases (e.g. Alzheimer). Moreover, the long range control of aggregation can be used to modulate the nanoparticle residence inside biological tissues.

8.
Microsc Microanal ; 19(3): 745-50, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23534911

RESUMO

A new technique that allows direct three-dimensional (3D) investigations of mesopores in carbon materials and quantitative characterization of their physical properties is reported. Focused ion beam nanotomography (FIB-nt) is performed by a serial sectioning procedure with a dual beam FIB-scanning electron microscopy instrument. Mesoporous carbons (MPCs) with tailored mesopore size are produced by carbonization of resorcinol-formaldehyde gels in the presence of a cationic surfactant as a pore stabilizer. A visual 3D morphology representation of disordered porous carbon is shown. Pore size distribution of MPCs is determined by the FIB-nt technique and nitrogen sorption isotherm methods to compare both results. The obtained MPCs exhibit pore sizes of 4.7, 7.2, and 18.3 nm, and a specific surface area of ca. 560 m(2)/g.

9.
Polymers (Basel) ; 15(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37242814

RESUMO

Hydrogels made of cross-linked polyacrlyamides (cPAM) and conducting materials made of polyanilines (PANIs) are both the most widely used materials in each category. This is due to their accessible monomers, easy synthesis and excellent properties. Therefore, the combination of these materials produces composites which show enhanced properties and also synergy between the cPAM properties (e.g., elasticity) and those of PANIs (e.g., conductivity). The most common way to produce the composites is to form the gel by radical polymerization (usually by redox initiators) then incorporate the PANIs into the network by oxidative polymerization of anilines. It is often claimed that the product is a semi-interpenetrated network (s-IPN) made of linear PANIs penetrating the cPAM network. However, there is evidence that the nanopores of the hydrogel become filled with PANIs nanoparticles, producing a composite. On the other hand, swelling the cPAM in true solutions of PANIs macromolecules renders s-IPN with different properties. Technological applications of the composites have been developed, such as photothermal (PTA)/electromechanical actuators, supercapacitors, movement/pressure sensors, etc. PTA devices rely on the absorption of electromagnetic radiation (light, microwaves, radiofrequency) by PANIs, which heats up the composite, triggering the phase transition of a thermosensitive cPAM. Therefore, the synergy of properties of both polymers is beneficial.

10.
Materials (Basel) ; 16(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36903216

RESUMO

With the goal of improving the mechanical properties of porous hierarchical carbon, cellulosic fiber fabric was incorporated into the resorcinol/formaldehyde (RF) precursor resins. The composites were carbonized in an inert atmosphere, and the carbonization process was monitored by TGA/MS. The mechanical properties, evaluated by nanoindentation, show an increase in the elastic modulus due to the reinforcing effect of the carbonized fiber fabric. It was found that the adsorption of the RF resin precursor onto the fabric stabilizes its porosity (micro and mesopores) during drying while incorporating macropores. The textural properties are evaluated by N2 adsorption isotherm, which shows a surface area (BET) of 558 m2g-1. The electrochemical properties of the porous carbon are evaluated by cyclic voltammetry (CV), chronocoulometry (CC), and electrochemical impedance spectroscopy (EIS). Specific capacitances (in 1 M H2SO4) of up to 182 Fg-1 (CV) and 160 Fg-1 (EIS) are measured. The potential-driven ion exchange was evaluated using Probe Bean Deflection techniques. It is observed that ions (protons) are expulsed upon oxidation in acid media by the oxidation of hydroquinone moieties present on the carbon surface. In neutral media, when the potential is varied from values negative to positive of the potential of zero charge, cation release, followed by anion insertion, is found.

11.
Colloids Surf B Biointerfaces ; 231: 113575, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832175

RESUMO

Novel soft materials based on hydrogel are proposed to enhance the selection of high-quality stallion sperm based on their adhesion capacity. The hydrogel surfaces are derived from polyacrylamide (PAAm), which is copolymerized with neutral and ionic co-monomers to modify the interfacial properties. The hydrogels undergo characterization through FTIR spectroscopy, assessment of swelling capacity, and wettability under various experimental conditions. Sperm adhesion capacity on the hydrogels is examined through several parameters including the percentage of bound sperm (%Sp) to hydrogels, tail oscillation intensity and flagellar movement. The biointerfacial properties of sperm-hydrogel systems vary based on the chemical composition of hydrogel as well as the components present in the culture medium. High %Sp and excellent metabolic activity of the spermatozoa are observed on hydrogel surfaces that possess moderate hydrophilicity. Specifically, a cationic hydrogel in BGM3 culture medium and a neutral surface in BGM3 medium supplemented with BSA exhibit favorable outcomes. Scanning Electron Microscopy (SEM) reveals the normal morphology of the head and tail in spermatozoa adhered to the hydrogel. Therefore, these hydrogel surfaces are potential materials for selecting stallion sperm with high quality, and their application could be extended to the study of other mammalian reproductive cells.


Assuntos
Hidrogéis , Sêmen , Masculino , Cavalos , Animais , Hidrogéis/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Molhabilidade , Mamíferos
12.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616492

RESUMO

The mechanochemical synthesis of polyanilines (PANIs), made by oxidative polymerization of anilines, is reviewed. First, previous knowledge of the polymerization reaction in solution is discussed to understand the effect of different parameters: oxidant/monomer ratio, added acid, oxidant, temperature and water content on the properties of the conducting polymers (molecular weight, degradation, doping/oxidation level, conductivity, and nanostructure). The work on mechanochemical polymerization (MCP) of anilines is analyzed in view of previous data in solution, and published data are critically reconsidered to clarify the interpretation of experimental results. A key factor is the production of acids during polymerization, which is often overlooked. The production of gaseous HCl during MCP of aniline hydrochloride is experimentally observed. Since some experiments involves the addition of small amounts of water, the kinetics and heat balance of the reaction with concentrated solutions were simulated. A simple experiment shows fast (<2 min) heating of the reaction mixture to the boiling point of water and temperature increments are observed during MCP in a mortar. The form and sizes of PANI nanostructures made by MCP or solution are compared. The extensive work on the production of nanocomposites by MCP of anilines together with different nanomaterials (porous clays, graphene, carbon nanotubes, metal, and oxide nanoparticles) is also described.

13.
Polymers (Basel) ; 15(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36616554

RESUMO

Organic chemical reactions have been used to functionalize preformed conducting polymers (CPs). The extensive work performed on polyaniline (PANI), polypyrrole (PPy), and polythiophene (PT) is described together with the more limited work on other CPs. Two approaches have been taken for the functionalization: (i) direct reactions on the CP chains and (ii) reaction with substituted CPs bearing reactive groups (e.g., ester). Electrophilic aromatic substitution, SEAr, is directly made on the non-conductive (reduced form) of the CPs. In PANI and PPy, the N-H can be electrophilically substituted. The nitrogen nucleophile could produce nucleophilic substitutions (SN) on alkyl or acyl groups. Another direct reaction is the nucleophilic conjugate addition on the oxidized form of the polymer (PANI, PPy or PT). In the case of PT, the main functionalization method was indirect, and the linking of functional groups via attachment to reactive groups was already present in the monomer. The same is the case for most other conducting polymers, such as poly(fluorene). The target properties which are improved by the functionalization of the different polymers is also discussed.

14.
RSC Adv ; 10(15): 9155-9164, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35496518

RESUMO

Polymeric nanocomposites were obtained by the formation of a thermosensitive hydrogel matrix around conducting polymer (CP) nanoparticles. The CP is able to absorb electromagnetic radiation which is converted into heat and induces the phase transition of the surrounding hydrogel. The method chosen to form the hydrogel is the free radical polymerization of a copolymer (N-isopropylacrylamide (NIPAM) and 2-acrylamide-2-methylpropano sulfonic acid (AMPS), PNIPAM-co-2% AMPS) in the presence of bisacrylamide as the crosslinker. The nanoparticles are polypyrrole nanospheres (PPy NP), polyaniline nanofibers (PANI NF), and polyaniline nanospheres (PANI NP). The morphology of the composites was studied using SEM microscopy and the percentage composition of each material was evaluated by thermogravimetric analysis (TGA). The swelling equilibrium capacity and rate are clearly affected by the nanoparticle shape and nature. However, the nanocomposites LCST are similar to that of the matrix. Upon RF irradiation, the three nanocomposites increase the temperature and reach the LCST after 320 seconds of irradiation (320 kJ). Upon MW application, the local temperature reaches the LCST after only 30 s (21 kJ), resulting in a MW more effective than RF to drive the transition. These results demonstrate that the proposed materials are useful as a remotely driven actuator.

15.
RSC Adv ; 10(10): 5827-5837, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35497440

RESUMO

Some of the essential properties for cellular scaffolding are the capability to maintain the three-dimensional (3D) structure, good adhesion, and adequate elastic modulus during cell growth, migration, and proliferation. Biocompatible synthetic hydrogels are commonly used as cellular scaffolds because they can mimic the natural extracellular matrices (ECMs). However, it is possible that the physicochemical and mechanical behavior of the scaffold changes during cell proliferation and loses the scaffold properties but this is rarely monitored. In this work, the physicochemical and mechanical properties of a macroporous soft material based on poly(N-isopropyl acrylamide) (PNIPAM) have been studied during a period of 75 days at culture condition while bovine fetal fibroblasts (BFF) were grown within the matrix. The interconnected macroporous hydrogel was obtained by cryogelation at -18 °C. The swelling capacity of the scaffold was not altered during cell proliferation but changes in the mechanical properties were observed, beginning with the high elastic modulus (280 kPa) that progressively decreased until mechanical stability (40 kPa) was achieved after 20 culture days. It was observed that the matrix-cell interactions together with collagen production favor normal cellular processes such as cell morphology, adhesion, migration, and proliferation. Therefore, the observed behavior of macroporous PNIPAM as a 3D scaffold during cell growth indicates that the soft matrix is cytocompatible for a long time and preserves the suitable properties that can be applied in tissue engineering and regenerative medicine.

16.
Colloids Surf B Biointerfaces ; 188: 110801, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31955014

RESUMO

A commercial biomedical Polyimide (PI) film was topographically and chemically modified by generating micrometric periodic arrays of lines using Direct Laser Interference Patterning (DLIP) in order to improve antifouling and antibacterial properties. DLIP patterning was performed with periods from 1 µm to 10 µm. The physical modification of the surface was characterized by SEM, AFM and contact angle measurements and, the chemical composition of the ablated surfaces was analyzed by ATR-IR and XPS spectroscopies. The antibacterial effects were evaluated through the effect on Pseudomonas aeruginosa colonies growth on the LB (Luria Bertani) broth. The results showed that the laser treatment change the topography and as a consequence the chemistry surface, also that the microstructured surfaces with periods below 2 µm, exhibited a significant bacterial (P. aeruginosa) adhesion decrease compared with non-structured surfaces or with surfaces with periods higher than 2 µm. The results suggest that periodic topography only confer antifouling properties and reduction of the biofilm formation when the microstructure presents periods ranging from 1 µm to 2 µm. On the other hand, the topography that confer strong antifouling superficial properties persists at long incubation times. In that way, polymer applications in the biosciences field can be improved by a surface topography modification using a simple, single-step laser-assisted ablation method.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Desenvolvimento de Medicamentos , Pseudomonas aeruginosa/efeitos dos fármacos , Resinas Sintéticas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Resinas Sintéticas/síntese química , Resinas Sintéticas/química , Propriedades de Superfície
17.
Polymers (Basel) ; 11(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652987

RESUMO

A method for the synthesis of a linear block copolymer (PNIPAM-b-PANI), containing a thermoresponsive block (poly(N-isopropylacrylamide), PNIPAM) and a Near Infrared (NIR) light-absorbing block (polyaniline, PANI), is reported. The synthetic approach involves a two-step successive polymerization reaction. First, the radical polymerization of NIPAM is done using 4-aminothiophenol as a chain transfer agent for the obtention of thermosensitive block terminated with an aniline (ANI) moiety. Second, the oxidative polymerization of ANI is initiated in ANI moiety of thermosensitive block to grow the second conductive PANI block. 1H nuclear magnetic resonance (NMR) and FT-IR spectroscopy shows the characteristics peaks of both polymeric blocks revealing the successful copolymerization process. Static Light Scattering (SLS) and UV-Visible combined measurements allowed the determination of the Mw for PNIPAM-b-PANI macromolecule: 5.5 × 105 g mol-1. The resulting copolymer is soluble in water (8.3 g L-1) and in non-aqueous solvents, such as ethanol, formic acid, acetonitrile, and others. Both polymer blocks chains show the properties of the polymer chains. The block copolymer shows a lower critical solution temperature (LCST) at the same temperature (32-34 °C) than PNIPAM, while the copolymer shows pH dependent UV-vis-NIR absorption similar to PANI. The PNIPAM block suffers a coil to globule transition upon NIR light irradiation (785 nm, 100 mW), as shown by turbidimetry and Atomic Force Microscopy (AFM), due to local heating (more than 9 °C in 12 min) induced by the NIR absorption at the PANI block. Furthermore, the electrical conductivity of PNIPAM-b-PANI thin films is demonstrated (resistivity of 5.3 × 10-4 Ω-1 cm-1), indicating that the PANI block is present in its conductive form.

18.
Int J Biol Macromol ; 122: 1253-1261, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219512

RESUMO

Alpha-amylase was immobilized inside three different polymeric matrices: polyacrylamide hydrogel (PAAm), polyacrylamide-graphene oxide nanocomposite (PAAm-GO) and alginate in order to study and compare the effect of the matrix on the catalytic performance. The morphology, swelling, mechanical properties, retention efficiency, and the catalytic behavior of these newly supported biocatalysts were studied. Nanocomposite made of PAAm-GO matrix incorporated 98% of the enzyme, likely through a cooperative effect, while alginate gels incorporated only 30%. Moreover, the enzyme retention using PAAm-GO reached a value of 97.5%. Starch hydrolysis catalyzed by the immobilized enzyme in PAAm-GO matrix showed similar kinetics profiles up to 5 cycles suggesting that the enzymatic activity is retained. These results compare very favorably with conventional immobilization in alginate where almost no activity was observed after 3 cycles. All results suggest that the PAAm matrices protect the biocatalyst allowing its reusability. Moreover, the improvements in enzyme catalytic properties via immobilization made this system as an excellent candidate in bio-industrial applications such as bioethanol production. Furthermore, the synthesized catalyst could produce a high yield of bioethanol by using enzymes and yeast immobilized in the same PAAm matrix. In this way, it is possible to produce sequential or simultaneous saccharification and fermentation.


Assuntos
Resinas Acrílicas/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Grafite/química , Nanocompostos/química , alfa-Amilases/química , alfa-Amilases/metabolismo , Aspergillus oryzae/enzimologia , Elasticidade , Cinética , Nanoporos , Óxidos/química , Viscosidade
19.
Heliyon ; 5(4): e01474, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31008402

RESUMO

Several hydrogel surfaces present properties that simulate the mechanical and physicochemical features of extracellular matrix (ECM), providing a platform that mimic the native cellular milieus. Poly-N-isopropylacrylamide (PNIPAM) hydrogels are receiving attention in biomedical field due to their thermosensibility and soft texture. However, more extensive biocompatibility and cellular interactions studies with cell lines are needed. Therefore, the aim of this study is focus on evaluating the biocompatibility of PNIPAM through cytotoxicity, genotoxicity, and proliferation tests in murine preadipose cells (3T3-L1), human embryonic kidney cells (HEK293) and human carcinoma-derived cells (A549) in presence of hydrogel surfaces. Bioadhesive capacity above PNIPAM surfaces was also analyzed. MTT and neutral red uptake assays shown non-cytotoxic effect of PNIPAM in the studied cell lines. Genotoxicity was evaluated by the single-cell gel electrophoresis assay, where DNA damages were not detected. [3H]-thymidine staining allowed to corroborate that cell proliferation had progressed correctly. Adopted morphologies for each cell line over PNIPAM were similar to cell growing observed on polystyrene, indicating that the surfaces favor the cell attachment during 5 days' culture. The good biocompatibility of PNIPAM surfaces make it an interesting scaffold with clinical potential in tissue regeneration engineering, and a possible adipose and kidney tissue-engineered construct.

20.
J Phys Chem B ; 122(38): 9038-9048, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30130119

RESUMO

The hydrophilic nature of hydrogels allows their swelling in aqueous solutions. In that way, any substance loaded inside the gel is exposed to the aqueous media and could be released if it is soluble in water. However, only substances that are soluble in water can be loaded inside a gel, which can be swelled only in water. In this work, we studied the swelling of poly( N-isopropylacrylamide) (PNIPAM) gels in nonaqueous solvents and their solutions with water. PNIPAM gels swell strongly in highly polar solvents, but they do not swell in slightly polar solvents (e.g., toluene). However, it is possible to swell the gel in mixtures containing toluene. The observed properties of PNIPAM gels allow describing them both as solvogels or amphigels. When the loaded substance is soluble in one solvent (e.g., water) and not in another (e.g., chloroform), the substance is not released but exposed to the new media. As a proof of concept, a colorimetric pH sensor active in CHCl3 and a Cu1+ sensor in water were built. Moreover, using a ternary solution containing toluene linear polystyrene can be loaded inside the gel, making a semi-interpenetrated network. Because PNIPAM swells in water and solvents immiscible in water, a liquid/liquid interphase can be set inside a gel. A near-infrared absorbing dye (soluble in CHCl3) is loaded in only half of a thermoresponsive PNIPAM gel. Upon near-infrared irradiation, only the region where the dye is loaded heats up driving the phase transition of PNIPAM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA