RESUMO
Hymenaea courbaril has been used to treat different diseases, although its properties are yet to be scientifically validated. The objective of this study was to determine the cytotoxicity, genotoxicity, antigenotoxicity and antioxidant potentials of hydroethanolic extract from H. courbaril seeds. Therefore, for the cytotoxicity test an anti-melanoma assay was performed in B16F10 strain cells. The genotoxicity and antigenotoxicity was evaluated in bone marrow cells (Permit number: 002/2010) of mice, the antioxidant activity was determined by the DPPH test and the total flavonoid content was also determined. The hydroethanolic extract showed antigenotoxic effect and antioxidant activity. It was verified that total flavonoid content was 442.25±18.03 mg RE/g dry extract. HPLC-PAD chromatogram revealed presence of flavones as majority compound in evaluated extract. The results allowed us to also infer that the hydroethanolic extract from seeds shows cytotoxic activity against B16F10 melanoma cells line and it has dose-and-time-dependency.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Hymenaea/química , Melanoma/patologia , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos , Testes para MicronúcleosRESUMO
Enzyme combinations producing short-chain cello-oligosaccharides (COS) as major bio-products from cellulose of Miscanthus Mx2779 accessed through different pretreatment methods were compared. Over short hydrolysis times, processive endoglucanase TfCel9a produced a high percentage of cellotetraose and cellopentaose and is synergistic with endoglucanase CcCel9m for producing short oligomers from amorphous cellulose but had low activity on untreated Miscanthus. Hydrolysis of the latter improved when these were combined with a mutant cellobio/triohydrolase OsCelC7(-105) and a lytic polysaccharide monooxygenase TrCel61a, a combination which also produced the highest COS yields from phosphoric acid swollen cellulose. Steam explosion pretreatment of Miscanthus increased COS yields, with/without phosphoric acid swelling, while increased swelling time (from 20 to 45 min) also increased yields but decreased the need for TrCel61a. The highest COS yields (933 mg/g glucan) and most stable product profile were obtained using ionic liquid [C2mim][OAc] pretreatment and the three enzyme mixture TfCel9a, Cel9m and OsCel7a(-105).