Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Signal ; 73: 109672, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32428553

RESUMO

Overexpression of C-X-C chemokine receptor type 4 (CXCR4) has been shown in several cancers, including non-small cell lung cancer (NSCLC) and is linked to early metastasis and worse prognosis. The crosstalk between cancer cells and tumor stroma promotes the growth and metastasis and CXCR4 signaling is a key element of this crosstalk. To test the effects of CXCR4 overexpression (CXCR4-OE), we transduced the human NSCLC cell line A549 by using a lentiviral vector. A 3D cell culture model showed generations of tumorspheres and the effects derived by the co-culturing of lung fibroblasts. Using a xenograft mouse model, we also studied the effects of CXCR4-OE in pulmonary cell engraftment and tumor burden in vivo. Our data indicate that CXCR4-OE leads to increased tumorsphere formation and epithelial-mesenchymal transition (EMT). CXCR4-OE by A549 cells resulted in a significant increase in the production of the CXCR4-ligand macrophage migration inhibitory factor (MIF) compared to those transduced with an empty vector (EV) or in which the CXCR4 expression was deleted (KO). In our in vitro system, we did not detect any production of the canonical CXCR4 ligand CXCL12. Autocrine MIF production and CXCR4 signaling are part of a self-perpetuating loop that amplifies tumor growth and EMT. Co-culture with lung fibroblasts further increased tumorsphere formation, partially driven by an increase in IL-6 production. When A549 cells were injected into murine lungs, we observed more abundant and significantly larger tumor lesions in recipients of CXCR4-OE A549 cells compared to those receiving EV or KO cells, consistent with our in vitro findings. Treatment of mice with the MIF antagonist ISO-1 resulted in significantly less tumor burden. In conclusion, our data highlight the role of the CXCR4-OE/MIF/IL-6 axis in epithelial mesenchymal crosstalk and NSCLC progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Quimiocina CXCL12/metabolismo , Interleucina-6/metabolismo , Oxirredutases Intramoleculares/fisiologia , Neoplasias Pulmonares/metabolismo , Fatores Inibidores da Migração de Macrófagos/fisiologia , Receptores CXCR4/fisiologia , Células A549 , Animais , Proliferação de Células , Transição Epitelial-Mesenquimal , Fibroblastos , Humanos , Camundongos , Camundongos Endogâmicos NOD
2.
Cancers (Basel) ; 12(1)2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877753

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is amongst the most fatal malignancies and its development is highly associated with inflammatory processes such as chronic pancreatitis (CP). Since the succinate dehydrogenase subunit B (SDHB) is regarded as tumor suppressor that is lost during cancer development, this study investigated the impact of M1-macrophages as part of the inflammatory microenvironment on the expression as well as function of SDHB in benign and premalignant pancreatic ductal epithelial cells (PDECs). Immunohistochemical analyses on pancreatic tissue sections from CP patients and control individuals revealed a stronger SDHB expression in ducts of CP tissues being associated with a greater abundance of macrophages compared to ducts in control tissues. Accordingly, indirect co-culture with M1-macrophages led to clearly elevated SDHB expression and SDH activity in benign H6c7-pBp and premalignant H6c7-kras PDECs. While siRNA-mediated SDHB knockdown in these cells did not affect glucose and lactate uptake after co-culture, SDHB knockdown significantly promoted PDEC growth which was associated with increased proliferation and decreased effector caspase activity particularly in co-cultured PDECs. Overall, these data indicate that SDHB expression and SDH activity are increased in PDECs when exposed to pro-inflammatory macrophages as a counterregulatory mechanism to prevent excessive PDEC growth triggered by the inflammatory environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA