Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(27): 277601, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638300

RESUMO

Local topological markers, topological invariants evaluated by local expectation values, are valuable for characterizing topological phases in materials lacking translation invariance. The Chern marker-the Chern number expressed in terms of the Fourier transformed Chern character-is an easily applicable local marker in even dimensions, but there are no analogous expressions for odd dimensions. We provide general analytic expressions for local markers for free-fermion topological states in odd dimensions protected by local symmetries: a Chiral marker, a local Z marker which in case of translation invariance is equivalent to the chiral winding number, and a Chern-Simons marker, a local Z_{2} marker characterizing all nonchiral phases in odd dimensions. We achieve this by introducing a one-parameter family P_{ϑ} of single-particle density matrices interpolating between a trivial state and the state of interest. By interpreting the parameter ϑ as an additional dimension, we calculate the Chern marker for the family P_{ϑ}. We demonstrate the practical use of these markers by characterizing the topological phases of two amorphous Hamiltonians in three dimensions: a topological superconductor (Z classification) and a topological insulator (Z_{2} classification).

2.
Phys Rev Lett ; 122(5): 056601, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822001

RESUMO

We show that Weyl semimetals exhibit a mixed axial-torsional anomaly in the presence of axial torsion, a concept exclusive of these materials with no known natural fundamental interpretation in terms of the geometry of spacetime. This anomaly implies a nonconservation of the axial current-the difference in the current of left- and right-handed chiral fermions-when the torsion of the spacetime in which the Weyl fermions move couples with opposite sign to different chiralities. The anomaly is activated by driving transverse sound waves through a Weyl semimetal with a spatially varying tilted dispersion, which can be engineered by applying strain. This leads to a sizable alternating current in the presence of a magnetic field that provides a clear-cut experimental signature of our predictions.

3.
Phys Rev Lett ; 118(1): 016804, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28106445

RESUMO

We demonstrate that the quantum mutual information (QMI) is a useful probe to study many-body localization (MBL). First, we focus on the detection of a metal-insulator transition for two different models, the noninteracting Aubry-André-Harper model and the spinless fermionic disordered Hubbard chain. We find that the QMI in the localized phase decays exponentially with the distance between the regions traced out, allowing us to define a correlation length, which converges to the localization length in the case of one particle. Second, we show how the QMI can be used as a dynamical indicator to distinguish an Anderson insulator phase from a MBL phase. By studying the spread of the QMI after a global quench from a random product state, we show that the QMI does not spread in the Anderson insulator phase but grows logarithmically in time in the MBL phase.

4.
Phys Rev Lett ; 119(3): 036804, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28777640

RESUMO

We calculate the charge current generated by a temperature bias between the two ends of a tubular nanowire. We show that in the presence of a transversal magnetic field the current can change sign; i.e., electrons can either flow from the hot to the cold reservoir, or in the opposite direction, when the temperature bias increases. This behavior occurs when the magnetic field is sufficiently strong, such that Landau and snaking states are created, and the energy dispersion is nonmonotonic with respect to the longitudinal wave vector. The sign reversal can survive in the presence of impurities. We predict this result for core-shell nanowires, for uniform nanowires with surface states due to the Fermi level pinning, and for topological insulator nanowires.

5.
Phys Rev Lett ; 115(4): 046603, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252702

RESUMO

We show that the one-particle density matrix ρ can be used to characterize the interaction-driven many-body localization transition in closed fermionic systems. The natural orbitals (the eigenstates of ρ) are localized in the many-body localized phase and spread out when one enters the delocalized phase, while the occupation spectrum (the set of eigenvalues of ρ) reveals the distinctive Fock-space structure of the many-body eigenstates, exhibiting a steplike discontinuity in the localized phase. The associated one-particle occupation entropy is small in the localized phase and large in the delocalized phase, with diverging fluctuations at the transition. We analyze the inverse participation ratio of the natural orbitals and find that it is independent of system size in the localized phase.

6.
Phys Rev Lett ; 113(10): 107003, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25238379

RESUMO

Finding a clear signature of topological superconductivity in transport experiments remains an outstanding challenge. In this work, we propose exploiting the unique properties of three-dimensional topological insulator nanowires to generate a normal-superconductor junction in the single-mode regime where an exactly quantized 2e2/h zero-bias conductance can be observed over a wide range of realistic system parameters. This is achieved by inducing superconductivity in half of the wire, which can be tuned at will from trivial to topological with a parallel magnetic field, while a perpendicular field is used to gap out the normal part, except for two spatially separated chiral channels. The combination of chiral mode transport and perfect Andreev reflection makes the measurement robust to moderate disorder, and the quantization of conductance survives to much higher temperatures than in tunnel junction experiments. Our proposal may be understood as a variant of a Majorana interferometer which is easily realizable in experiments.

7.
Phys Rev Lett ; 113(10): 107204, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25238383

RESUMO

Many-body localization occurs in isolated quantum systems when Anderson localization persists in the presence of finite interactions. Despite strong evidence for the existence of a many-body localization transition, a reliable extraction of the critical disorder strength is difficult due to a large drift with system size in the studied quantities. In this Letter, we explore two entanglement properties that are promising for the study of the many-body localization transition: the variance of the half-chain entanglement entropy of exact eigenstates and the long time change in entanglement after a local quench from an exact eigenstate. We investigate these quantities in a disordered quantum Ising chain and use them to estimate the critical disorder strength and its energy dependence. In addition, we analyze a spin-glass transition at large disorder strength and provide evidence for it being a separate transition. We, thereby, give numerical support for a recently proposed phase diagram of many-body localization with localization protected quantum order [Huse et al., Phys. Rev. B 88, 014206 (2013).

8.
Nano Lett ; 13(1): 48-53, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23198980

RESUMO

We demonstrate evidence of a surface gap opening in topological insulator (TI) thin films of (Bi(0.57)Sb(0.43))(2)Te(3) below six quintuple layers through transport and scanning tunneling spectroscopy measurements. By effective tuning the Fermi level via gate-voltage control, we unveil a striking competition between weak localization and weak antilocalization at low magnetic fields in nonmagnetic ultrathin films, possibly owing to the change of the net Berry phase. Furthermore, when the Fermi level is swept into the surface gap of ultrathin samples, the overall unitary behaviors are revealed at higher magnetic fields, which are in contrast to the pure WAL signals obtained in thicker films. Our findings show an exotic phenomenon characterizing the gapped TI surface states and point to the future realization of quantum spin Hall effect and dissipationless TI-based applications.

9.
Rep Prog Phys ; 76(5): 056501, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23552181

RESUMO

Topological insulators (TIs) have an insulating bulk but a metallic surface. In the simplest case, the surface electronic structure of a three-dimensional (3D) TI is described by a single two-dimensional (2D) Dirac cone. A single 2D Dirac fermion cannot be realized in an isolated 2D system with time-reversal symmetry, but rather owes its existence to the topological properties of the 3D bulk wavefunctions. The transport properties of such a surface state are of considerable current interest; they have some similarities with graphene, which also realizes Dirac fermions, but have several unique features in their response to magnetic fields. In this review we give an overview of some of the main quantum transport properties of TI surfaces. We focus on the efforts to use quantum interference phenomena, such as weak anti-localization and the Aharonov-Bohm effect, to verify in a transport experiment the Dirac nature of the surface state and its defining properties. In addition to explaining the basic ideas and predictions of the theory, we provide a survey of recent experimental work.

10.
Phys Rev Lett ; 109(1): 017202, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-23031128

RESUMO

An important and incompletely answered question is whether a closed quantum system of many interacting particles can be localized by disorder. The time evolution of simple (unentangled) initial states is studied numerically for a system of interacting spinless fermions in one dimension described by the random-field XXZ Hamiltonian. Interactions induce a dramatic change in the propagation of entanglement and a smaller change in the propagation of particles. For even weak interactions, when the system is thought to be in a many-body localized phase, entanglement shows neither localized nor diffusive behavior but grows without limit in an infinite system: interactions act as a singular perturbation on the localized state with no interactions. The significance for proposed atomic experiments is that local measurements will show a large but nonthermal entropy in the many-body localized state. This entropy develops slowly (approximately logarithmically) over a diverging time scale as in glassy systems.

11.
Phys Rev Lett ; 108(7): 076804, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22401238

RESUMO

Weak topological insulators have an even number of Dirac cones in their surface spectrum and are thought to be unstable to disorder, which leads to an insulating surface. Here we argue that the presence of disorder alone will not localize the surface states; rather, the presence of a time-reversal symmetric mass term is required for localization. Through numerical simulations, we show that in the absence of the mass term the surface always flow to a stable metallic phase and the conductivity obeys a one-parameter scaling relation, just as in the case of a strong topological insulator surface. With the inclusion of the mass, the transport properties of the surface of a weak topological insulator follow a two-parameter scaling form.

12.
Phys Rev Lett ; 109(21): 216602, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23215605

RESUMO

The quantum spin Hall insulator is characterized by the presence of gapless helical edge states where the spin of the charge carriers is locked to their direction of motion. In order to probe the properties of the edge modes, we propose a design of a tunable quantum impurity realized by a local gate under an external magnetic field. Using the integrability of the impurity model, the conductance is computed for arbitrary interactions, temperatures and voltages, including the effect of Fermi liquid leads. The result can be used to infer the strength of interactions from transport experiments.

13.
Phys Rev Lett ; 107(2): 020402, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21797582

RESUMO

Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the "Shannon entropy" of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut.

14.
Beilstein J Nanotechnol ; 9: 1156-1161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719766

RESUMO

In this paper we consider charge current generated by maintaining a temperature difference over a nanowire at zero voltage bias. For topological insulator nanowires in a perpendicular magnetic field the current can change sign as the temperature of one end is increased. Here we study how this thermoelectric current sign reversal depends on the magnetic field and how impurities affect the size of the thermoelectric current. We consider both scalar and magnetic impurities and show that their influence on the current are quite similar, although the magnetic impurities seem to be more effective in reducing the effect. For moderate impurity concentration the sign reversal persists.

15.
Nat Commun ; 7: 11615, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27186980

RESUMO

Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA