RESUMO
The cross section of the ^{13}C(α,n)^{16}O reaction is needed for nuclear astrophysics and applications to a precision of 10% or better, yet inconsistencies among 50 years of experimental studies currently lead to an uncertainty of ≈15%. Using a state-of-the-art neutron detection array, we have performed a high resolution differential cross section study covering a broad energy range. These measurements result in a dramatic improvement in the extrapolation of the cross section to stellar energies potentially reducing the uncertainty to ≈5% and resolving long standing discrepancies in higher energy data.
RESUMO
The rate of the final step in the astrophysical αp process, the ^{34}Ar(α,p)^{37}K reaction, suffers from large uncertainties due to a lack of experimental data, despite having a considerable impact on the observable light curves of x-ray bursts and the composition of the ashes of hydrogen and helium burning on accreting neutron stars. We present the first direct measurement constraining the ^{34}Ar(α,p)^{37}K reaction cross section, using the Jet Experiments in Nuclear Structure and Astrophysics gas jet target. The combined cross section for the ^{34}Ar,Cl(α,p)^{37}K,Ar reaction is found to agree well with Hauser-Feshbach predictions. The ^{34}Ar(α,2p)^{36}Ar cross section, which can be exclusively attributed to the ^{34}Ar beam component, also agrees to within the typical uncertainties quoted for statistical models. This indicates the applicability of the statistical model for predicting astrophysical (α,p) reaction rates in this part of the αp process, in contrast to earlier findings from indirect reaction studies indicating orders-of-magnitude discrepancies. This removes a significant uncertainty in models of hydrogen and helium burning on accreting neutron stars.
Assuntos
Hélio , Hidrogênio , Modelos Estatísticos , NêutronsRESUMO
The ^{30}P(p,γ)^{31}S reaction plays an important role in understanding the nucleosynthesis of A≥30 nuclides in oxygen-neon novae. The Gaseous Detector with Germanium Tagging was used to measure ^{31}Cl ß-delayed proton decay through the key J^{π}=3/2^{+}, 260-keV resonance. The intensity I_{ßp}^{260}=8.3_{-0.9}^{+1.2}×10^{-6} represents the weakest ß-delayed, charged-particle emission ever measured below 400 keV, resulting in a proton branching ratio of Γ_{p}/Γ=2.5_{-0.3}^{+0.4}×10^{-4}. By combining this measurement with shell-model calculations for Γ_{γ} and past work on other resonances, the total ^{30}P(p,γ)^{31}S rate has been determined with reduced uncertainty. The new rate has been used in hydrodynamic simulations to model the composition of nova ejecta, leading to a concrete prediction of ^{30}Si:^{28}Si excesses in presolar nova grains and the calibration of nuclear thermometers.
RESUMO
Type-I x-ray bursts can reveal the properties of an accreting neutron star system when compared with astrophysics model calculations. However, model results are sensitive to a handful of uncertain nuclear reaction rates, such as ^{22}Mg(α,p). We report the first direct measurement of ^{22}Mg(α,p), performed with the Active Target Time Projection Chamber. The corresponding astrophysical reaction rate is orders of magnitude larger than determined from a previous indirect measurement in a broad temperature range. Our new measurement suggests a less-compact neutron star in the source GS1826-24.
RESUMO
Detection of nuclear-decay γ rays provides a sensitive thermometer of nova nucleosynthesis. The most intense γ-ray flux is thought to be annihilation radiation from the ß^{+} decay of ^{18}F, which is destroyed prior to decay by the ^{18}F(p,α)^{15}O reaction. Estimates of ^{18}F production had been uncertain, however, because key near-threshold levels in the compound nucleus, ^{19}Ne, had yet to be identified. We report the first measurement of the ^{19}F(^{3}He,tγ)^{19}Ne reaction, in which the placement of two long-sought 3/2^{+} levels is suggested via triton-γ-γ coincidences. The precise determination of their resonance energies reduces the upper limit of the rate by a factor of 1.5-17 at nova temperatures and reduces the average uncertainty on the nova detection probability by a factor of 2.1.
RESUMO
The ß-delayed neutron emission of ^{83,84}Ga isotopes was studied using the neutron time-of-flight technique. The measured neutron energy spectra showed emission from states at excitation energies high above the neutron separation energy and previously not observed in the ß decay of midmass nuclei. The large decay strength deduced from the observed intense neutron emission is a signature of Gamow-Teller transformation. This observation was interpreted as evidence for allowed ß decay to ^{78}Ni core-excited states in ^{83,84}Ge favored by shell effects. We developed shell model calculations in the proton fpg_{9/2} and neutron extended fpg_{9/2}+d_{5/2} valence space using realistic interactions that were used to understand measured ß-decay lifetimes. We conclude that enhanced, concentrated ß-decay strength for neutron-unbound states may be common for very neutron-rich nuclei. This leads to intense ß-delayed high-energy neutron and strong multineutron emission probabilities that in turn affect astrophysical nucleosynthesis models.
RESUMO
The thermonuclear ^{30}P(p,γ)^{31}S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key ^{31}S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the ß decay of ^{31}Cl, we have observed the ß-delayed γ decay of a ^{31}S state at E_{x}=6390.2(7) keV, with a ^{30}P(p,γ)^{31}S resonance energy of E_{r}=259.3(8) keV, in the middle of the ^{30}P(p,γ)^{31}S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at E_{x}=6279.0(6) keV, giving it an unambiguous spin and parity of 3/2^{+} and making it an important l=0 resonance for proton capture on ^{30}P.
RESUMO
Atomic nuclei have a shell structure in which nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in (133)Sn that lie outside the double shell closure present at the short-lived nucleus (132)Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of (132)Sn.
RESUMO
The Galactic 1.809-MeV γ-ray signature from the ß decay of ^{26g}Al is a dominant target of γ-ray astronomy, of which a significant component is understood to originate from massive stars. The ^{26g}Al(p,γ)^{27}Si reaction is a major destruction pathway for ^{26g}Al at stellar temperatures, but the reaction rate is poorly constrained due to uncertainties in the strengths of low-lying resonances in ^{27}Si. The ^{26g}Al(d,p)^{27}Al reaction has been employed in inverse kinematics to determine the spectroscopic factors, and hence resonance strengths, of proton resonances in ^{27}Si via mirror symmetry. The strength of the 127-keV resonance is found to be a factor of 4 higher than the previously adopted upper limit, and the upper limit for the 68-keV resonance has been reduced by an order of magnitude, considerably constraining the ^{26g}Al destruction rate at stellar temperatures.
RESUMO
An approach is presented to experimentally constrain previously unreachable (p, γ) reaction rates on nuclei far from stability in the astrophysical rp process. Energies of all critical resonances in the (57)Cu(p,γ)(58)Zn reaction are deduced by populating states in (58)Zn with a (d, n) reaction in inverse kinematics at 75 MeV/u, and detecting γ-ray-recoil coincidences with the state-of-the-art γ-ray tracking array GRETINA and the S800 spectrograph at the National Superconducting Cyclotron Laboratory. The results reduce the uncertainty in the (57)Cu(p,γ) reaction rate by several orders of magnitude. The effective lifetime of (56)Ni, an important waiting point in the rp process in x-ray bursts, can now be determined entirely from experimentally constrained reaction rates.
RESUMO
The rate of the 18F(p,γ)19Ne reaction affects the final abundance of the γ-ray observable radioisotope 18F, produced in novae. However, no successful measurement of this reaction exists and the rate used is calculated from incomplete information on the contributing resonances. Of the two resonances thought to play a significant role, one has a radiative width estimated from the assumed analogue state in the mirror nucleus, 19F. The second does not have an analogue state assignment at all, resulting in an arbitrary radiative width being assumed. Here, we report the first successful direct measurement of the 18F(p,γ)^19Ne reaction. The strength of the 665 keV resonance (Ex=7.076 MeV) is found to be over an order of magnitude weaker than currently assumed in nova models. Reaction rate calculations show that this resonance therefore plays no significant role in the destruction of ^{18}F at any astrophysical energy.
RESUMO
Recent calculations suggest that the rate of neutron capture by (130)Sn has a significant impact on late-time nucleosynthesis in the r process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r-process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d,p) reaction has been studied in inverse kinematics using a 630 MeV beam of (130)Sn (4.8 MeV/u) and a (CD(2))(n) target. An array of Si strip detectors, including the Silicon Detector Array and an early implementation of the Oak Ridge Rutgers University Barrel Array, was used to detect reaction products. Results for the (130)Sn(d, p)(131)Sn reaction are found to be very similar to those from the previously reported (132)Sn(d, p)(133)Sn reaction. Direct-semidirect (n,γ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates.
RESUMO
The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus 11Be, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the 10Be(d,âp) reaction has been used in inverse kinematics at four beam energies to study the structure of 11Be. The spectroscopic factors extracted using the adiabatic model were found to be consistent across the four measurements and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in an nâj=2s(1/2) state coupled to the ground state of 10Be is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p(1/2) state.
RESUMO
The rate of the (17)F(p,gamma)(18)Ne reaction is important in various astrophysical events. A previous (17)F(p,p)(17)F measurement identified a 3;{+} state providing the strongest resonance contribution, but the resonance strength was unknown. We have directly measured the (17)F(p,gamma)(18)Ne reaction using a mixed beam of (17)F and (17)O at ORNL. The resonance strength for the 3;{+} resonance in (18)Ne was found to be omegagamma = 33 +/- 14(stat) +/-1 7(syst) meV, corresponding to a gamma width of Gamma_{gamma} = 56 +/- 24(stat) +/- 30(syst) meV. An upper limit on the direct capture of S(E)
RESUMO
Production of the radioisotope 18F in novae is severely constrained by the rate of the 18F(p,alpha)15O reaction. A resonance at E(c.m.)=330 keV may strongly enhance the 18F(p,alpha)15O reaction rate, but its strength has been very uncertain. We have determined the strength of this important resonance by measuring the 18F(p,alpha)15O cross section on and off resonance using a radioactive 18F beam at the ORNL Holifield Radioactive Ion Beam Facility. We find that its resonance strength is 1.48+/-0.46 eV, and that it dominates the 18F(p,alpha)15O reaction rate over a significant range of temperatures characteristic of ONeMg novae.