Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 191: 106393, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154608

RESUMO

Phosphodiesterase 2 A (PDE2A) is an enzyme involved in the homeostasis of cAMP and cGMP and is the most highly expressed PDE in human brain regions critical for socio-cognitive behavior. In cerebral cortex and hippocampus, PDE2A expression level is upregulated in Fmr1-KO mice, a model of the Fragile X Syndrome (FXS), the most common form of inherited intellectual disability (ID) and autism spectrum disorder (ASD). Indeed, PDE2A translation is negatively modulated by FMRP, whose functional absence causes FXS. While the pharmacological inhibition of PDE2A has been associated to its pro-cognitive role in normal animals and in models of ID and ASD, homozygous PDE2A mutations have been identified in patients affected by ID, ASD and epilepsy. To clarify this apparent paradox about the role of PDE2A in brain development, we characterized here Pde2a+/- mice (homozygote animals being not viable) at the behavioral, cellular, molecular and electrophysiological levels. Pde2a+/- females display a milder form of the disorder with reduced cognitive performance in adulthood, conversely males show severe socio-cognitive deficits throughout their life. In males, these phenotypes are associated with microglia activation, elevated glutathione levels and increased externalization of Glutamate receptor (GluR1) in CA1, producing reduced mGluR-dependent Long-term Depression. Overall, our results reveal molecular targets of the PDE2A-dependent pathway underlying socio-cognitive performance. These results clarify the mechanism of action of pro-cognitive drugs based on PDE2A inactivation, which have been shown to be promising therapeutic approaches for Alzheimer's disease, schizophrenia, FXS as well as other forms of ASD.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Animais , Feminino , Humanos , Masculino , Camundongos , Cognição , Proteína do X Frágil da Deficiência Intelectual/genética , Camundongos Knockout , Microglia/metabolismo , Diester Fosfórico Hidrolases/metabolismo
2.
Genome Res ; 30(11): 1633-1642, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32973039

RESUMO

To gain better insight into the dynamic interaction between cells and their environment, we developed the agonist-induced functional analysis and cell sorting (aiFACS) technique, which allows the simultaneous recording and sorting of cells in real-time according to their immediate and individual response to a stimulus. By modulating the aiFACS selection parameters, testing different developmental times, using various stimuli, and multiplying the analysis of readouts, it is possible to analyze cell populations of any normal or pathological tissue. The association of aiFACS with single-cell transcriptomics allows the construction of functional tissue cartography based on specific pharmacological responses of cells. As a proof of concept, we used aiFACS on the dissociated mouse brain, a highly heterogeneous tissue, enriching it in interneurons by stimulation with KCl or with AMPA, an agonist of the glutamate receptors, followed by sorting based on calcium levels. After AMPA stimulus, single-cell transcriptomics of these aiFACS-selected interneurons resulted in a nine-cluster classification. Furthermore, we used aiFACS on interneurons derived from the brain of the Fmr1-KO mouse, a rodent model of fragile X syndrome. We showed that these interneurons manifest a generalized defective response to AMPA compared with wild-type cells, affecting all the analyzed cell clusters at one specific postnatal developmental time.


Assuntos
Encéfalo/metabolismo , Separação Celular/métodos , Citometria de Fluxo/métodos , Interneurônios/metabolismo , RNA-Seq , Análise de Célula Única , Encéfalo/citologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Técnicas de Inativação de Genes , Interneurônios/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
3.
Mol Psychiatry ; 26(9): 4570-4582, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33414502

RESUMO

Phosphodiesterases (PDEs) are enzymes involved in the homeostasis of both cAMP and cGMP. They are members of a family of proteins that includes 11 subfamilies with different substrate specificities. Their main function is to catalyze the hydrolysis of cAMP, cGMP, or both. cAMP and cGMP are two key second messengers that modulate a wide array of intracellular processes and neurobehavioral functions, including memory and cognition. Even if these enzymes are present in all tissues, we focused on those PDEs that are expressed in the brain. We took into consideration genetic variants in patients affected by neurodevelopmental disorders, phenotypes of animal models, and pharmacological effects of PDE inhibitors, a class of drugs in rapid evolution and increasing application to brain disorders. Collectively, these data indicate the potential of PDE modulators to treat neurodevelopmental diseases characterized by learning and memory impairment, alteration of behaviors associated with depression, and deficits in social interaction. Indeed, clinical trials are in progress to treat patients with Alzheimer's disease, schizophrenia, depression, and autism spectrum disorders. Among the most recent results, the application of some PDE inhibitors (PDE2A, PDE3, PDE4/4D, and PDE10A) to treat neurodevelopmental diseases, including autism spectrum disorders and intellectual disability, is a significant advance, since no specific therapies are available for these disorders that have a large prevalence. In addition, to highlight the role of several PDEs in normal and pathological neurodevelopment, we focused here on the deregulation of cAMP and/or cGMP in Down Syndrome, Fragile X Syndrome, Rett Syndrome, and intellectual disability associated with the CC2D1A gene.


Assuntos
Transtornos do Neurodesenvolvimento , Diester Fosfórico Hidrolases , 3',5'-AMP Cíclico Fosfodiesterases , Animais , AMP Cíclico , GMP Cíclico , Humanos , Transtornos do Neurodesenvolvimento/genética , Inibidores de Fosfodiesterase
4.
Am J Med Genet A ; 185(6): 1841-1847, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33720513

RESUMO

Childhood-Onset Schizophrenia (COS) is a very rare and severe psychiatric disorder defined by adult schizophrenia symptoms occurring before the age of 13. We report a microduplication in the 10q26.3 region including part of the Inositol Polyphosphate-5-Phosphatase A (INPP5A) gene that segregates with Schizophrenia Spectrum Disorders (SSDs) in the family of a female patient affected by both COS and Autism Spectrum Disorder (ASD). Phenotyping and genotyping (including CGH-array) were performed for mother, healthy sister, and affected child according to the GenAuDiss protocol (NCT02565524). The duplication size is 324 kb and is present in a patient with COS and in her mother with SSD, but not in the patient's healthy sister. INPP5A encodes a membrane-associated 43 kDa type I inositol 1,4,5-trisphosphate (InsP3) 5-phosphatase. This protein is found both in mouse and human brains and we found that its Drosophila homologue 5PtaseI is specifically expressed in the central nervous system. Hydrolyzed products from InsP3 5-phosphatases mobilize intracellular calcium, which is relevant for dendritic spine morphogenesis in neurons and altered in both schizophrenia and ASD. These may constitute arguments in favor of this gene alteration in the pathophysiology of COS.


Assuntos
Transtorno do Espectro Autista/genética , Transtornos Globais do Desenvolvimento Infantil/genética , Inositol Polifosfato 5-Fosfatases/genética , Esquizofrenia Infantil/genética , Adolescente , Adulto , Animais , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/patologia , Encéfalo/patologia , Criança , Transtornos Globais do Desenvolvimento Infantil/complicações , Transtornos Globais do Desenvolvimento Infantil/patologia , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Linhagem , Fenótipo , Esquizofrenia Infantil/complicações , Esquizofrenia Infantil/patologia , Irmãos , Adulto Jovem
5.
Cereb Cortex ; 29(8): 3241-3252, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30137253

RESUMO

The fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in translational regulation of mRNAs that play key roles in synaptic morphology and plasticity. The functional absence of FMRP causes the fragile X syndrome (FXS), the most common form of inherited intellectual disability and the most common monogenic cause of autism. No effective treatment is available for FXS. We recently identified the Phosphodiesterase 2A (Pde2a) mRNA as a prominent target of FMRP. PDE2A enzymatic activity is increased in the brain of Fmr1-KO mice, a recognized model of FXS, leading to decreased levels of cAMP and cGMP. Here, we pharmacologically inhibited PDE2A in Fmr1-KO mice and observed a rescue both of the maturity of dendritic spines and of the exaggerated hippocampal mGluR-dependent long-term depression. Remarkably, PDE2A blockade rescued the social and communicative deficits of both mouse and rat Fmr1-KO animals. Importantly, chronic inhibition of PDE2A in newborn Fmr1-KO mice followed by a washout interval, resulted in the rescue of the altered social behavior observed in adolescent mice. Altogether, these results reveal the key role of PDE2A in the physiopathology of FXS and suggest that its pharmacological inhibition represents a novel therapeutic approach for FXS.


Assuntos
Comunicação Animal , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Síndrome do Cromossomo X Frágil/enzimologia , Hipocampo/efeitos dos fármacos , Imidazóis/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Comportamento Social , Triazinas/farmacologia , Animais , Animais Recém-Nascidos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Espinhas Dendríticas/patologia , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Cultura Primária de Células , Ratos , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo
6.
Nucleic Acids Res ; 46(12): 6344-6355, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29668986

RESUMO

Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is due to the functional deficiency of the fragile X mental retardation protein (FMRP), an RNA-binding protein involved in translational regulation of many messenger RNAs, playing key roles in synaptic morphology and plasticity. To date, no effective treatment for FXS is available. We searched for FMRP targets by HITS-CLIP during early development of multiple mouse brain regions (hippocampus, cortex and cerebellum) at a time of brain development when FMRP is most highly expressed and synaptogenesis reaches a peak. We identified the largest dataset of mRNA targets of FMRP available in brain and we defined their cellular origin. We confirmed the G-quadruplex containing structure as an enriched motif in FMRP RNA targets. In addition to four less represented motifs, our study points out that, in the brain, CTGKA is the prominent motif bound by FMRP, which recognizes it when not engaged in Watson-Crick pairing. All of these motifs negatively modulated the expression level of a reporter protein. While the repertoire of FMRP RNA targets in cerebellum is quite divergent, the ones of cortex and hippocampus are vastly overlapping. In these two brain regions, the Phosphodiesterase 2a (Pde2a) mRNA is a prominent target of FMRP, which modulates its translation and intracellular transport. This enzyme regulates the homeostasis of cAMP and cGMP and represents a novel and attractive therapeutic target to treat FXS.


Assuntos
Encéfalo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , RNA Mensageiro/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Cerebelo/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Hipocampo/metabolismo , Imunoprecipitação , Masculino , Camundongos , Motivos de Nucleotídeos , Ligação Proteica , RNA Mensageiro/química , Análise de Sequência de RNA
7.
RNA ; 23(6): 899-909, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28258160

RESUMO

Spinal muscular atrophy (SMA) is caused by mutations and/or deletions of the survival motor neuron gene (SMN1). Besides its function in the biogenesis of spliceosomal snRNPs, SMN might possess a motor neuron specific role and could function in the transport of axonal mRNAs and in the modulation of local protein translation. Accordingly, SMN colocalizes with axonal mRNAs of differentiated NSC-34 motor neuron-like cells. We recently showed that SMN depletion gives rise to a decrease in the axonal transport of the mRNAs encoding Annexin A2 (Anxa2). In this work, we have characterized the structural features of the Anxa2 mRNA required for its axonal targeting by SMN. We found that a G-rich motif located near the 3'UTR is essential for axonal localization of the Anxa2 transcript. We also show that mutations in the motif sequence abolish targeting of Anxa2 reporter mRNAs in axon-like structures of differentiated NSC-34 cells. Finally, localization of both wild-type and mutated Anxa2 reporters is restricted to the cell body in SMN-depleted cells. Altogether, our studies show that this G-motif represents a novel and essential determinant for axonal localization of the Anxa2 mRNA mediated by the SMN complex.


Assuntos
Anexina A2/genética , Anexina A2/metabolismo , Axônios/metabolismo , Motivos de Nucleotídeos , RNA Mensageiro , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Regiões 3' não Traduzidas , Animais , Anexina A2/química , Sequência de Bases , Linhagem Celular , Quadruplex G , Expressão Gênica , Genes Reporter , Humanos , Camundongos , Neurônios Motores/metabolismo , Ligação Proteica , Transporte Proteico , Transporte de RNA
8.
Proc Natl Acad Sci U S A ; 113(26): E3619-28, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27233938

RESUMO

Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.


Assuntos
Diacilglicerol Quinase/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Neurônios/enzimologia , Idoso , Animais , Espinhas Dendríticas/enzimologia , Espinhas Dendríticas/metabolismo , Diacilglicerol Quinase/genética , Diglicerídeos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/enzimologia , Síndrome do Cromossomo X Frágil/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neurônios/metabolismo , Transdução de Sinais
9.
Stem Cells ; 35(2): 374-385, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27664080

RESUMO

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, ßIII-tubulin, p27kip1 , NeuN, and NeuroD1 were upregulated, leading to an accelerated neuronal differentiation that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. Stem Cells 2017;35:374-385.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Neurogênese , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Forma Celular/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Cinética , Camundongos , Camundongos Knockout , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/genética
10.
Nucleic Acids Res ; 43(17): 8540-50, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26250109

RESUMO

Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors.


Assuntos
Cerebelo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Quinase 4 de Receptor Acoplado a Proteína G/genética , RNA Mensageiro/metabolismo , Animais , Sítios de Ligação , Proteína do X Frágil da Deficiência Intelectual/química , Proteína do X Frágil da Deficiência Intelectual/genética , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Camundongos , Camundongos Knockout , Ligação Proteica , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/química
11.
Nucleic Acids Res ; 43(3): 1834-47, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25628358

RESUMO

Hoyeraal-Hreidarsson syndrome (HHS) is a severe form of Dyskeratosis congenita characterized by developmental defects, bone marrow failure and immunodeficiency and has been associated with telomere dysfunction. Recently, mutations in Regulator of Telomere ELongation helicase 1 (RTEL1), a helicase first identified in Mus musculus as being responsible for the maintenance of long telomeres, have been identified in several HHS patients. Here we show that RTEL1 is required for the export and the correct cytoplasmic trafficking of the small nuclear (sn) RNA pre-U2, a component of the major spliceosome complex. RTEL1-HHS cells show abnormal subcellular partitioning of pre-U2, defects in the recycling of ribonucleotide proteins (RNP) in the cytoplasm and splicing defects. While most of these phenotypes can be suppressed by re-expressing the wild-type protein in RTEL1-HHS cells, expression of RTEL1 mutated variants in immortalized cells provokes cytoplasmic mislocalizations of pre-U2 and other RNP components, as well as splicing defects, thus phenocopying RTEL1-HHS cellular defects. Strikingly, expression of a cytoplasmic form of RTEL1 is sufficient to correct RNP mislocalizations both in RTEL1-HHS cells and in cells expressing nuclear mutated forms of RTEL1. This work unravels completely unanticipated roles for RTEL1 in RNP trafficking and strongly suggests that defects in RNP biogenesis pathways contribute to the pathology of HHS.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , DNA Helicases/fisiologia , Precursores de RNA/metabolismo , RNA Nuclear Pequeno/metabolismo , Sequência de Bases , Transporte Biológico , Northern Blotting , Cromatografia Líquida , DNA Helicases/genética , Primers do DNA , Células HEK293 , Células HeLa , Humanos , Reação em Cadeia da Polimerase , RNA Interferente Pequeno , Espectrometria de Massas em Tandem
12.
PLoS Genet ; 9(3): e1003367, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555284

RESUMO

The Fragile X-Related 1 gene (FXR1) is a paralog of the Fragile X Mental Retardation 1 gene (FMR1), whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific. A reduction of these isoforms is found in myoblasts from Facio-Scapulo Humeral Dystrophy (FSHD) patients. FXR1P is an RNA-binding protein involved in translational control; however, so far, no mRNA target of FXR1P has been linked to the drastic muscular phenotypes caused by its absence. In this study, gene expression profiling of C2C12 myoblasts reveals that transcripts involved in cell cycle and muscular development pathways are modulated by Fxr1-depletion. We observed an increase of p21--a regulator of cell-cycle progression--in Fxr1-knocked-down mouse C2C12 and FSHD human myoblasts. Rescue of this molecular phenotype is possible by re-expressing human FXR1P in Fxr1-depleted C2C12 cells. FXR1P muscle-specific isoforms bind p21 mRNA via direct interaction with a conserved G-quadruplex located in its 3' untranslated region. The FXR1P/G-quadruplex complex reduces the half-life of p21 mRNA. In the absence of FXR1P, the upregulation of p21 mRNA determines the elevated level of its protein product that affects cell-cycle progression inducing a premature cell-cycle exit and generating a pool of cells blocked at G0. Our study describes a novel role of FXR1P that has crucial implications for the understanding of its role during myogenesis and muscle development, since we show here that in its absence a reduced number of myoblasts will be available for muscle formation/regeneration, shedding new light into the pathophysiology of FSHD.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Distrofias Musculares , Mioblastos , Proteínas de Ligação a RNA/genética , Animais , Ciclo Celular/genética , Diferenciação Celular , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Camundongos , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
13.
Hum Mol Genet ; 22(15): 2984-91, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23562910

RESUMO

Loss of FMR2 causes Fragile X E (FRAXE) site-associated intellectual disability (ID). FMR2 regulates transcription, promotes alternative splicing with preference for G-quartet structure harbouring exons and is localized to the nuclear speckles. In primary skin fibroblasts from FRAXE patients (n = 8), we found a significant reduction in the number, but a significant increase in the size, of nuclear speckles, when compared with the controls (n = 4). Since nuclear speckles are enriched with factors involved in pre-mRNA processing, we explored the consequence of these defects and the loss of FMR2 on the transcriptome. We performed whole genome expression profiling using total RNA extracted from these cell lines and found 27 genes significantly deregulated by at least 2-fold at P < 0.05 in the patients. Among these genes, FOS was significantly upregulated and was further investigated due to its established role in neuronal cell function. We showed that (i) 30% depletion of Fmr2 in mouse primary cortical neurons led to a 2-fold increase in Fos expression, (ii) overexpression of FMR2 significantly decreased FOS promoter activity in luciferase assays, and (iii) as FOS promoter contains a serum response element, we found that not FOS, but JUN, which encodes for a protein that forms a transcriptional activator complex with FOS, was significantly upregulated in the patients' cell lines upon mitogen stimulation. These results suggest that FMR2 is an upstream regulator of FOS and JUN, and further link deregulation of the immediate early response genes to the pathology of ID- and FRAXE-associated ID in particular.


Assuntos
Regulação da Expressão Gênica , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/genética , Linhagem Celular , Fibroblastos/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos
14.
Hum Mol Genet ; 22(10): 1971-82, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23390134

RESUMO

While FMR1 is silenced in Fragile X syndrome (FXS) patients carrying the full mutation, its expression is elevated (2-8 fold) in premutated individuals. These people may develop the Fragile X-associated Tremor/Ataxia syndrome (FXTAS), a late onset neurodegenerative disorder characterized by ataxia and parkinsonism. In addition, people carrying the premutation can be affected by a set of neurological and behavioral disorders during young age. Problems of memory have been detected in these patients as well as in the mouse models for FXTAS. To date little is known concerning the metabolism of FMR1 mRNA, notwithstanding the importance of the finely tuned regulation of the expression of this gene. In the present study, we identified three microRNAs that specifically target the 3' UTR of FMR1 and can modulate its expression throughout the brain particularly at the synapse where their expression is very high. The expression level of miR-221 is reduced in synaptosomal preparations of young FXTAS mice suggesting a general deregulation of transcripts located at the synapse of these mice. By transcriptome analysis, we show here a robust deregulation of the expression levels of genes involved in learning, memory and autistic behavior, Parkinson disease and neurodegeneration. These findings suggest the presence of a synaptopathy in these animals. Interestingly, many of those deregulated mRNAs are target of the same microRNAs that modulate the expression of FMR1 at the synapse.


Assuntos
Regiões 3' não Traduzidas , Ataxia/metabolismo , Proteína do X Frágil da Deficiência Intelectual/biossíntese , Síndrome do Cromossomo X Frágil/metabolismo , MicroRNAs/metabolismo , Sinapses/metabolismo , Tremor/metabolismo , Animais , Ataxia/genética , Ataxia/patologia , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Células HeLa , Humanos , Camundongos , MicroRNAs/genética , Células NIH 3T3 , Sinapses/genética , Sinapses/patologia , Tremor/genética , Tremor/patologia
15.
J Proteome Res ; 13(10): 4388-97, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25168779

RESUMO

Fragile X mental retardation protein (FMRP) is an RNA-binding protein that has a major effect on neuronal protein synthesis. Transcriptional silencing of the FMR1 gene leads to loss of FMRP and development of Fragile X syndrome (FXS), the most common known hereditary cause of intellectual impairment and autism. Here we utilize SILAC-based quantitative phosphoproteomics to analyze murine FMR1(-) and FMR1(+) fibroblastic cell lines derived from FMR1-KO embryos to identify proteins and phosphorylation sites dysregulated as a consequence of FMRP loss. We quantify FMRP-related changes in the levels of 5,023 proteins and 6,133 phosphorylation events and map them onto major signal transduction pathways. Our study confirms global downregulation of the MAPK/ERK pathway and decrease in phosphorylation level of ERK1/2 in the absence of FMRP, which is connected to attenuation of long-term potentiation. We detect differential expression of several key proteins from the p53 pathway, pointing to the involvement of p53 signaling in dysregulated cell cycle control in FXS. Finally, we detect differential expression and phosphorylation of proteins involved in pre-mRNA processing and nuclear transport, as well as Wnt and calcium signaling, such as PLC, PKC, NFAT, and cPLA2. We postulate that calcium homeostasis is likely affected in molecular pathogenesis of FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Fosfoproteínas/metabolismo , Proteômica , Transdução de Sinais , Animais , Western Blotting , Linhagem Celular Transformada , Cromatografia Líquida , Proteína do X Frágil da Deficiência Intelectual/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espectrometria de Massas em Tandem
16.
Genome Res ; 21(12): 2190-202, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21900387

RESUMO

Fragile X syndrome (FXS) is the first cause of inherited intellectual disability, due to the silencing of the X-linked Fragile X Mental Retardation 1 gene encoding the RNA-binding protein FMRP. While extensive studies have focused on the cellular and molecular basis of FXS, neither human Fragile X patients nor the mouse model of FXS--the Fmr1-null mouse--have been profiled systematically at the metabolic and neurochemical level to provide a complementary perspective on the current, yet scattered, knowledge of FXS. Using proton high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR)-based metabolic profiling, we have identified a metabolic signature and biomarkers associated with FXS in various brain regions of Fmr1-deficient mice. Our study highlights for the first time that Fmr1 gene inactivation has profound, albeit coordinated consequences in brain metabolism leading to alterations in: (1) neurotransmitter levels, (2) osmoregulation, (3) energy metabolism, and (4) oxidative stress response. To functionally connect Fmr1-deficiency to its metabolic biomarkers, we derived a functional interaction network based on the existing knowledge (literature and databases) and show that the FXS metabolic response is initiated by distinct mRNA targets and proteins interacting with FMRP, and then relayed by numerous regulatory proteins. This novel "integrated metabolome and interactome mapping" (iMIM) approach advantageously unifies novel metabolic findings with previously unrelated knowledge and highlights the contribution of novel cellular pathways to the pathophysiology of FXS. These metabolomic and integrative systems biology strategies will contribute to the development of potential drug targets and novel therapeutic interventions, which will eventually benefit FXS patients.


Assuntos
Química Encefálica , Encéfalo/metabolismo , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/metabolismo , Metaboloma , Biologia de Sistemas/métodos , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Humanos , Camundongos , Camundongos Knockout
17.
Hum Mol Genet ; 20(10): 1873-85, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21330300

RESUMO

The AFF (AF4/FMR2) family of genes includes four members: AFF1/AF4, AFF2/FMR2, AFF3/LAF4 and AFF4/AF5q31. AFF2/FMR2 is silenced in FRAXE intellectual disability, while the other three members have been reported to form fusion genes as a consequence of chromosome translocations with the myeloid/lymphoid or mixed lineage leukemia (MLL) gene in acute lymphoblastic leukemias (ALLs). All AFF proteins are localized in the nucleus and their role as transcriptional activators with a positive action on RNA elongation was primarily studied. We have recently shown that AFF2/FMR2 localizes to nuclear speckles, subnuclear structures considered as storage/modification sites of pre-mRNA splicing factors, and modulates alternative splicing via the interaction with the G-quadruplex RNA-forming structure. We show here that similarly to AFF2/FMR2, AFF3/LAF4 and AFF4/AF5q31 localize to nuclear speckles and are able to bind RNA, having a high apparent affinity for the G-quadruplex structure. Interestingly, AFF3/LAF4 and AFF4/AF5q31, like AFF2/FMR2, modulate, in vivo, the splicing efficiency of a mini-gene containing a G-quadruplex structure in one alternatively spliced exon. Furthermore, we observed that the overexpression of AFF2/3/4 interferes with the organization and/or biogenesis of nuclear speckles. These findings fit well with our observation that enlarged nuclear speckles are present in FRAXE fibroblasts. Furthermore, our findings suggest functional redundancy among the AFF family members in the regulation of splicing and transcription. It is possible that other members of the AFF family compensate for the loss of AFF2/FMR2 activity and as such explain the relatively mild to borderline phenotype observed in FRAXE patients.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Fibroblastos/metabolismo , Expressão Gênica/genética , Ordem dos Genes , Genes Reporter/genética , Células HeLa , Humanos , Espaço Intranuclear/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Splicing de RNA/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
Front Neurosci ; 17: 1171895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188005

RESUMO

Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability (ID) and a primary genetic cause of autism spectrum disorder (ASD). FXS arises from the silencing of the FMR1 gene causing the lack of translation of its encoded protein, the Fragile X Messenger RibonucleoProtein (FMRP), an RNA-binding protein involved in translational control and in RNA transport along dendrites. Although a large effort during the last 20 years has been made to investigate the cellular roles of FMRP, no effective and specific therapeutic intervention is available to treat FXS. Many studies revealed a role for FMRP in shaping sensory circuits during developmental critical periods to affect proper neurodevelopment. Dendritic spine stability, branching and density abnormalities are part of the developmental delay observed in various FXS brain areas. In particular, cortical neuronal networks in FXS are hyper-responsive and hyperexcitable, making these circuits highly synchronous. Overall, these data suggest that the excitatory/inhibitory (E/I) balance in FXS neuronal circuitry is altered. However, not much is known about how interneuron populations contribute to the unbalanced E/I ratio in FXS even if their abnormal functioning has an impact on the behavioral deficits of patients and animal models affected by neurodevelopmental disorders. We revise here the key literature concerning the role of interneurons in FXS not only with the purpose to better understand the pathophysiology of this disorder, but also to explore new possible therapeutic applications to treat FXS and other forms of ASD or ID. Indeed, for instance, the re-introduction of functional interneurons in the diseased brains has been proposed as a promising therapeutic approach for neurological and psychiatric disorders.

19.
PLoS Biol ; 7(1): e16, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19166269

RESUMO

Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in several steps of RNA metabolism. To date, two RNA motifs have been found to mediate FMRP/RNA interaction, the G-quartet and the "kissing complex," which both induce translational repression in the presence of FMRP. We show here a new role for FMRP as a positive modulator of translation. FMRP specifically binds Superoxide Dismutase 1 (Sod1) mRNA with high affinity through a novel RNA motif, SoSLIP (Sod1 mRNA Stem Loops Interacting with FMRP), which is folded as three independent stem-loop structures. FMRP induces a structural modification of the SoSLIP motif upon its interaction with it. SoSLIP also behaves as a translational activator whose action is potentiated by the interaction with FMRP. The absence of FMRP results in decreased expression of Sod1. Because it has been observed that brain metabolism of FMR1 null mice is more sensitive to oxidative stress, we propose that the deregulation of Sod1 expression may be at the basis of several traits of the physiopathology of the Fragile X syndrome, such as anxiety, sleep troubles, and autism.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , Superóxido Dismutase/genética , Animais , Sítios de Ligação , Encéfalo/enzimologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Camundongos , Camundongos Mutantes , Polirribossomos , Biossíntese de Proteínas , RNA Mensageiro/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
20.
Nature ; 442(7104): 814-7, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16862120

RESUMO

WAVE1--the Wiskott-Aldrich syndrome protein (WASP)--family verprolin homologous protein 1--is a key regulator of actin-dependent morphological processes in mammals, through its ability to activate the actin-related protein (Arp2/3) complex. Here we show that WAVE1 is phosphorylated at multiple sites by cyclin-dependent kinase 5 (Cdk5) both in vitro and in intact mouse neurons. Phosphorylation of WAVE1 by Cdk5 inhibits its ability to regulate Arp2/3 complex-dependent actin polymerization. Loss of WAVE1 function in vivo or in cultured neurons results in a decrease in mature dendritic spines. Expression of a dephosphorylation-mimic mutant of WAVE1 reverses this loss of WAVE1 function in spine morphology, but expression of a phosphorylation-mimic mutant does not. Cyclic AMP (cAMP) signalling reduces phosphorylation of the Cdk5 sites in WAVE1, and increases spine density in a WAVE1-dependent manner. Our data suggest that phosphorylation/dephosphorylation of WAVE1 in neurons has an important role in the formation of the filamentous actin cytoskeleton, and thus in the regulation of dendritic spine morphology.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Dendritos/fisiologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/química , Animais , Biopolímeros/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Citoesqueleto/química , Dendritos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA