Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
FASEB J ; 33(2): 2372-2387, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277819

RESUMO

NF-E2-related factor 2 (NRF2) transcription factor has a fundamental role in cell homeostasis maintenance as one of the master regulators of oxidative and electrophilic stress responses. Previous studies have shown that a regulatory connection exists between NRF2 and autophagy during reactive oxygen species-generated oxidative stress. The aim of the present study was to investigate how autophagy is turned off during prolonged oxidative stress, to avoid overeating and destruction of essential cellular components. AMPK is a key cellular energy sensor highly conserved in eukaryotic organisms, and it has an essential role in autophagy activation at various stress events. Here the role of human AMPK and its Caenorhabditis elegans counterpart AAK-2 was explored upon oxidative stress. We investigated the regulatory connection between NRF2 and AMPK during oxidative stress induced by tert-butyl hydroperoxide (TBHP) in HEK293T cells and C. elegans. Putative conserved NRF2/protein skinhead-1 binding sites were found in AMPK/aak-2 genes by in silico analysis and were later confirmed experimentally by using EMSA. After addition of TBHP, NRF2 and AMPK showed a quick activation; AMPK was later down-regulated, however, while NRF2 level remained high. Autophagosome formation and Unc-51-like autophagy activating kinase 1 phosphorylation were initially stimulated, but they returned to basal values after 4 h of TBHP treatment. The silencing of NRF2 resulted in a constant activation of AMPK leading to hyperactivation of autophagy during oxidative stress. We observed the same effects in C. elegans demonstrating the conservation of this self-defense mechanism to save cells from hyperactivated autophagy upon prolonged oxidative stress. We conclude that NRF2 negatively regulates autophagy through delayed down-regulation of the expression of AMPK upon prolonged oxidative stress. This regulatory connection between NRF2 and AMPK may have an important role in understanding how autophagy is regulated in chronic human morbidities characterized by oxidative stress, such as neurodegenerative diseases, certain cancer types, and in metabolic diseases.-Kosztelnik, M., Kurucz, A., Papp, D., Jones, E., Sigmond, T., Barna, J., Traka, M. H., Lorincz, T., Szarka, A., Banhegyi, G., Vellai, T., Korcsmaros, T., Kapuy, O. Suppression of AMPK/aak-2 by NRF2/SKN-1 down-regulates autophagy during prolonged oxidative stress.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Células HEK293 , Humanos , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética
2.
Cell Mol Life Sci ; 76(20): 4131-4144, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31053883

RESUMO

ABCB6 belongs to the family of ATP-binding cassette (ABC) transporters, which transport various molecules across extra- and intra-cellular membranes, bearing significant impact on human disease and pharmacology. Although mutations in the ABCB6 gene have been linked to a variety of pathophysiological conditions ranging from transfusion incompatibility to pigmentation defects, its precise cellular localization and function is not understood. In particular, the intracellular localization of ABCB6 has been a matter of debate, with conflicting reports suggesting mitochondrial or endolysosomal expression. ABCB6 shows significant sequence identity to HMT-1 (heavy metal tolerance factor 1) proteins, whose evolutionarily conserved role is to confer tolerance to heavy metals through the intracellular sequestration of metal complexes. Here, we show that the cadmium-sensitive phenotype of Schizosaccharomyces pombe and Caenorhabditis elegans strains defective for HMT-1 is rescued by the human ABCB6 protein. Overexpression of ABCB6 conferred tolerance to cadmium and As(III) (As2O3), but not to As(V) (Na2HAsO4), Sb(V), Hg(II), or Zn(II). Inactivating mutations of ABCB6 abolished vacuolar sequestration of cadmium, effectively suppressing the cadmium tolerance phenotype. Modulation of ABCB6 expression levels in human glioblastoma cells resulted in a concomitant change in cadmium sensitivity. Our findings reveal ABCB6 as a functional homologue of the HMT-1 proteins, linking endolysosomal ABCB6 to the highly conserved mechanism of intracellular cadmium detoxification.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Cádmio/toxicidade , Proteínas de Caenorhabditis elegans/genética , Inativação Metabólica/genética , Poluentes Químicos da Água/toxicidade , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antimônio/toxicidade , Arseniatos/toxicidade , Trióxido de Arsênio/toxicidade , Cádmio/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Sequência Conservada , Expressão Gênica , Teste de Complementação Genética , Células HeLa , Humanos , Mercúrio/toxicidade , Mutação , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Poluentes Químicos da Água/metabolismo , Zinco/toxicidade
3.
Cell Mol Life Sci ; 75(16): 2897-2916, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29774376

RESUMO

Various stress factors leading to protein damage induce the activation of an evolutionarily conserved cell protective mechanism, the heat shock response (HSR), to maintain protein homeostasis in virtually all eukaryotic cells. Heat shock factor 1 (HSF1) plays a central role in the HSR. HSF1 was initially known as a transcription factor that upregulates genes encoding heat shock proteins (HSPs), also called molecular chaperones, which assist in refolding or degrading injured intracellular proteins. However, recent accumulating evidence indicates multiple additional functions for HSF1 beyond the activation of HSPs. Here, we present a nearly comprehensive list of non-HSP-related target genes of HSF1 identified so far. Through controlling these targets, HSF1 acts in diverse stress-induced cellular processes and molecular mechanisms, including the endoplasmic reticulum unfolded protein response and ubiquitin-proteasome system, multidrug resistance, autophagy, apoptosis, immune response, cell growth arrest, differentiation underlying developmental diapause, chromatin remodelling, cancer development, and ageing. Hence, HSF1 emerges as a major orchestrator of cellular stress response pathways.


Assuntos
Fenômenos Fisiológicos Celulares/genética , Regulação da Expressão Gênica , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Animais , Apoptose/genética , Autofagia/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos
4.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752429

RESUMO

HSF1 (heat shock factor 1) is an evolutionarily conserved master transcriptional regulator of the heat shock response (HSR) in eukaryotic cells. In response to high temperatures, HSF1 upregulates genes encoding molecular chaperones, also called heat shock proteins, which assist the refolding or degradation of damaged intracellular proteins. Accumulating evidence reveals however that HSF1 participates in several other physiological and pathological processes such as differentiation, immune response, and multidrug resistance, as well as in ageing, neurodegenerative demise, and cancer. To address how HSF1 controls these processes one should systematically analyze its target genes. Here we present a novel database called HSF1Base (hsf1base.org) that contains a nearly comprehensive list of HSF1 target genes identified so far. The list was obtained by manually curating publications on individual HSF1 targets and analyzing relevant high throughput transcriptomic and chromatin immunoprecipitation data derived from the literature and the Yeastract database. To support the biological relevance of HSF1 targets identified by high throughput methods, we performed an enrichment analysis of (potential) HSF1 targets across different tissues/cell types and organisms. We found that general HSF1 functions (targets are expressed in all tissues/cell types) are mostly related to cellular proteostasis. Furthermore, HSF1 targets that are conserved across various animal taxa operate mostly in cellular stress pathways (e.g., autophagy), chromatin remodeling, ribosome biogenesis, and ageing. Together, these data highlight diverse roles for HSF1, expanding far beyond the HSR.


Assuntos
Proteínas de Choque Térmico/genética , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Humanos , Camundongos , Chaperonas Moleculares/genética , Proteostase/genética , Fatores de Transcrição/genética
5.
Nutr Neurosci ; 21(5): 317-327, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28185482

RESUMO

OBJECTIVES: The aim of the study was to understand the effects of suckling on the brain of the pups by mapping their brain activation pattern in response to suckling. METHODS: The c-fos method was applied to identify activated neurons. Fasted rat pups were returned to their mothers for suckling and sacrificed 2 hours later for Fos immunohistochemistry. Double labeling was also performed to characterize some of the activated neurons. For comparison, another group of fasted pups were given dry food before Fos mapping. RESULTS: After suckling, we found an increase in the number of Fos-immunoreactive neurons in the insular and somatosensory cortices, central amygdaloid nucleus (CAm), paraventricular (PVN) and supraoptic hypothalamic nuclei, lateral parabrachial nucleus (LPB), nucleus of the solitary tract (NTS), and the area postrema. Double labeling experiments demonstrated the activation of calcitonin gene-related peptide-ir (CGRP-ir) neurons in the LPB, corticotropin-releasing hormone-ir (CRH-ir) but not oxytocin-ir neurons in the PVN, and noradrenergic neurons in the NTS. In the CAm, Fos-ir neurons did not contain CRH but were apposed to CGRP-ir fiber terminals. Refeeding with dry food-induced Fos activation in all brain areas activated by suckling. The degree of activation was higher following dry food consumption than suckling in the insular cortex, and lower in the supraoptic nucleus and the NTS. Furthermore, the accumbens, arcuate, and dorsomedial hypothalamic nuclei, and the lateral hypothalamic area, which were not activated by suckling, showed activation by dry food. DISCUSSION: Neurons in a number of brain areas are activated during suckling, and may participate in the signaling of satiety, taste perception, reward, food, and salt balance regulation.


Assuntos
Animais Lactentes , Encéfalo/fisiologia , Ingestão de Alimentos/fisiologia , Animais , Animais Recém-Nascidos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Núcleo Central da Amígdala/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Regulação da Expressão Gênica , Imuno-Histoquímica , Masculino , Neurônios/metabolismo , Ocitocina/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo , Desmame
6.
Aging Cell ; : e14246, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895933

RESUMO

The transcription factor HSF-1 (heat shock factor 1) acts as a master regulator of heat shock response in eukaryotic cells to maintain cellular proteostasis. The protein has a protective role in preventing cells from undergoing ageing, and neurodegeneration, and also mediates tumorigenesis. Thus, modulating HSF-1 activity in humans has a promising therapeutic potential for treating these pathologies. Loss of HSF-1 function is usually associated with impaired stress tolerance. Contrary to this conventional knowledge, we show here that inactivation of HSF-1 in the nematode Caenorhabditis elegans results in increased thermotolerance at young adult stages, whereas HSF-1 deficiency in animals passing early adult stages indeed leads to decreased thermotolerance, as compared to wild-type. Furthermore, a gene expression analysis supports that in young adults, distinct cellular stress response and immunity-related signaling pathways become induced upon HSF-1 deficiency. We also demonstrate that increased tolerance to proteotoxic stress in HSF-1-depleted young worms requires the activity of the unfolded protein response of the endoplasmic reticulum and the SKN-1/Nrf2-mediated oxidative stress response pathway, as well as an innate immunity-related pathway, suggesting a mutual compensatory interaction between HSF-1 and these conserved stress response systems. A similar compensatory molecular network is likely to also operate in higher animal taxa, raising the possibility of an unexpected outcome when HSF-1 activity is manipulated in humans.

7.
Nat Commun ; 14(1): 5278, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644049

RESUMO

Mobility of transposable elements (TEs) frequently leads to insertional mutations in functional DNA regions. In the potentially immortal germline, TEs are effectively suppressed by the Piwi-piRNA pathway. However, in the genomes of ageing somatic cells lacking the effects of the pathway, TEs become increasingly mobile during the adult lifespan, and their activity is associated with genomic instability. Whether the progressively increasing mobilization of TEs is a cause or a consequence of ageing remains a fundamental problem in biology. Here we show that in the nematode Caenorhabditis elegans, the downregulation of active TE families extends lifespan. Ectopic activation of Piwi proteins in the soma also promotes longevity. Furthermore, DNA N6-adenine methylation at TE stretches gradually rises with age, and this epigenetic modification elevates their transcription as the animal ages. These results indicate that TEs represent a novel genetic determinant of ageing, and that N6-adenine methylation plays a pivotal role in ageing control.


Assuntos
Elementos de DNA Transponíveis , Longevidade , Animais , Longevidade/genética , Elementos de DNA Transponíveis/genética , Caenorhabditis elegans/genética , Regulação para Baixo/genética , Adenina
8.
BMC Dev Biol ; 12: 32, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23116063

RESUMO

BACKGROUND: Temperature affects virtually all cellular processes. A quick increase in temperature challenges the cells to undergo a heat shock response to maintain cellular homeostasis. Heat shock factor-1 (HSF-1) functions as a major player in this response as it activates the transcription of genes coding for molecular chaperones (also called heat shock proteins) that maintain structural integrity of proteins. However, the mechanisms by which HSF-1 adjusts fundamental cellular processes such as growth, proliferation, differentiation and aging to the ambient temperature remain largely unknown. RESULTS: We demonstrate here that in Caenorhabditis elegans HSF-1 represses the expression of daf-7 encoding a TGF-ß (transforming growth factor-beta) ligand, to induce young larvae to enter the dauer stage, a developmentally arrested, non-feeding, highly stress-resistant, long-lived larval form triggered by crowding and starvation. Under favorable conditions, HSF-1 is inhibited by crowding pheromone-sensitive guanylate cyclase/cGMP (cyclic guanosine monophosphate) and systemic nutrient-sensing insulin/IGF-1 (insulin-like growth factor-1) signaling; loss of HSF-1 activity allows DAF-7 to promote reproductive growth. Thus, HSF-1 interconnects the insulin/IGF-1, TGF-ß and cGMP neuroendocrine systems to control development and longevity in response to diverse environmental stimuli. Furthermore, HSF-1 upregulates another TGF-ß pathway-interacting gene, daf-9/cytochrome P450, thereby fine-tuning the decision between normal growth and dauer formation. CONCLUSION: Together, these results provide mechanistic insight into how temperature, nutrient availability and population density coordinately influence development, lifespan, behavior and stress response through HSF-1.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , GMP Cíclico/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Envelhecimento/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Resposta ao Choque Térmico/genética , Insulina/metabolismo , Longevidade/genética , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/genética , Regulação para Cima
9.
Cell Tissue Res ; 349(2): 459-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22696173

RESUMO

Mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene can result in skeletal and dental hypomineralization and severe neurological symptoms. TNAP is expressed in the synaptic cleft and the node of Ranvier in normal adults. Using TNAP knockout (KO) mice (Akp2(-/-)), we studied synaptogenesis and myelination with light- and electron microscopy during the early postnatal days. Ablation of TNAP function resulted in a significant decrease of the white matter of the spinal cord accompanied by ultrastructural evidence of cellular degradation around the paranodal regions and a decreased ratio and diameter of the myelinated axons. In the cerebral cortex, myelinated axons, while present in wild-type, were absent in the Akp2( -/- ) mice and these animals also displayed a significantly increased proportion of immature cortical synapses. The results suggest that TNAP deficiency could contribute to neurological symptoms related to myelin abnormalities and synaptic dysfunction, among which epilepsy, consistently present in the Akp2(-/-) mice and observed in severe cases of hypophosphatasia.


Assuntos
Fosfatase Alcalina/metabolismo , Córtex Cerebral/enzimologia , Córtex Cerebral/crescimento & desenvolvimento , Medula Espinal/enzimologia , Medula Espinal/crescimento & desenvolvimento , Sinapses/enzimologia , Fosfatase Alcalina/análise , Fosfatase Alcalina/genética , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Técnicas de Inativação de Genes , Camundongos , Camundongos Knockout , Bainha de Mielina/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Sinapses/metabolismo
10.
Biol Futur ; 73(4): 427-439, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36402935

RESUMO

Heat shock transcription factors (HSFs) are widely known as master regulators of the heat shock response. In invertebrates, a single heat shock factor, HSF1, is responsible for the maintenance of protein homeostasis. In vertebrates, seven members of the HSF family have been identified, namely HSF1, HSF2, HSF3, HSF4, HSF5, HSFX, and HSFY, of which HSF1 and HSF2 are clearly associated with heat shock response, while HSF4 is involved in development. Other members of the family have not yet been studied as extensively. Besides their role in cellular proteostasis, HSFs influence a plethora of biological processes such as aging, development, cell proliferation, and cell differentiation, and they are implicated in several pathologies such as neurodegeneration and cancer. This is achieved by regulating the expression of a great variety of genes including chaperones. Here, we review our current knowledge on the function of HSF family members and important aspects that made possible the functional diversification of HSFs.


Assuntos
Proteínas de Choque Térmico , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/genética
11.
Curr Biol ; 32(21): 4593-4606.e8, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36113471

RESUMO

Social touch is an essential component of communication. Little is known about the underlying pathways and mechanisms. Here, we discovered a novel neuronal pathway from the posterior intralaminar thalamic nucleus (PIL) to the medial preoptic area (MPOA) involved in the control of social grooming. We found that the neurons in the PIL and MPOA were naturally activated by physical contact between female rats and also by the chemogenetic stimulation of PIL neurons. The activity-dependent tagging of PIL neurons was performed in rats experiencing physical social contact. The chemogenetic activation of these neurons increased social grooming between familiar rats, as did the selective activation of the PIL-MPOA pathway. Neurons projecting from the PIL to the MPOA express the neuropeptide parathyroid hormone 2 (PTH2), and the central infusion of its receptor antagonist diminished social grooming. Finally, we showed a similarity in the anatomical organization of the PIL and the distribution of the PTH2 receptor in the MPOA between the rat and human brain. We propose that the discovered neuronal pathway facilitates physical contact with conspecifics.


Assuntos
Neuropeptídeos , Roedores , Humanos , Ratos , Feminino , Animais , Asseio Animal , Área Pré-Óptica/fisiologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo
12.
Dev Biol ; 330(2): 339-48, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19361495

RESUMO

The vulva of the Caenorhabditis elegans hermaphrodite develops from a subset of six vulval precursor cells (VPCs) by the combined effect of the Ras, Wingless and Notch signaling cascades, and of three redundant synMuv (synthetic Multivulva) pathways grouped into classes A, B and C. Here we show that signaling via the GLI- (Glioma-associated protein) like transcription factor TRA-1, which is the terminal regulator of the C. elegans sex determination cascade, is a newly discovered pathway specifying vulval cell fates. We found that TRA-1 accumulates in, and regulates the fusion process of, cells (including the VPCs and hypodermal cells) involved in vulval patterning. TRA-1 also influenced the expression of the Hox gene lin-39, a central regulator of vulval development. Furthermore, inactivation of tra-1, which transforms animals with hermaphrodite-specific karyotype into males, promoted vulval induction in synMuv A, but not in synMuv B, mutant background. This implies that TRA-1 interacts with the class B synMuv genes, many of which are involved in chromatin-mediated transcriptional repression of cell proliferation. These results may help to understand how compromised GLI activity in humans leads to cancer. Together, we suggest that the GLI protein family involved in several key developmental processes in both invertebrates and vertebrates regulates somatic cell fates through influencing, at least in part, the expression of specific Hox genes.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Proteínas Oncogênicas/fisiologia , Fatores de Transcrição/fisiologia , Vulva/embriologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Masculino , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico , Processos de Determinação Sexual , Transdução de Sinais , Fatores de Transcrição/metabolismo
13.
Sci Rep ; 9(1): 4597, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872665

RESUMO

Complement component 1q subcomponent binding protein (C1qbp) is a multifunctional protein involved in immune response, energy homeostasis of cells as a plasma membrane receptor, and a nuclear, cytoplasmic or mitochondrial protein. Recent reports suggested its neuronal function, too, possibly in axon maintenance, synaptic function, and neuroplasticity. Therefore, we addressed to identify C1qbp in the rat brain using in situ hybridization histochemistry and immunolabelling at light and electron microscopic level. C1qbp has a topographical distribution in the brain established by the same pattern of C1qbp mRNA-expressing and protein-containing neurons with the highest abundance in the cerebral cortex, anterodorsal thalamic nucleus, hypothalamic paraventricular (PVN) and arcuate nuclei, spinal trigeminal nucleus. Double labelling of C1qbp with the neuronal marker NeuN, with the astrocyte marker S100, and the microglia marker Iba1 demonstrated the presence of C1qbp in neurons but not in glial cells in the normal brain, while C1qbp appeared in microglia following their activation induced by focal ischemic lesion. Only restricted neurons expressed C1qbp, for example, in the PVN, magnocellular neurons selectively contained C1qbp. Further double labelling by using the mitochondria marker Idh3a antibody suggested the mitochondrial localization of C1qbp in the brain, confirmed by correlated light and electron microscopy at 3 different brain regions. Post-embedding immunoelectron microscopy also suggested uneven C1qbp content of mitochondria in different brain areas but also heterogeneity within single neurons. These data suggest a specific function of C1qbp in the brain related to mitochondria, such as the regulation of local energy supply in neuronal cells.


Assuntos
Encéfalo/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Encéfalo/patologia , Encéfalo/ultraestrutura , Córtex Cerebral/metabolismo , Imunofluorescência , Expressão Gênica , Imuno-Histoquímica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
14.
Genetics ; 177(1): 655-60, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17890369

RESUMO

Here we show that in the nematode Caenorhabditis elegans mutational inactivation of two autophagy genes unc-51/atg1 and bec-1/atg6/beclin1 results in small body size without affecting cell number. Furthermore, loss-of-function mutations in unc-51 and bec-1 suppress the giant phenotype of mutant animals with aberrant insulin-like growth factor-1 (insulin/IGF-1) or transforming growth factor-beta (TGF-beta) signaling. This function for unc-51 and bec-1 in cell size control and their interaction with these two growth modulatory pathways may represent a link between the hormonal and nutritional regulation of cell growth.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Tamanho Celular , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Mutação , Fenótipo , Somatomedinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Transporte Vesicular
15.
Aging Cell ; 17(3): e12724, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29493066

RESUMO

A fascinating aspect of sexual dimorphism in various animal species is that the two sexes differ substantially in lifespan. In humans, for example, women's life expectancy exceeds that of men by 3-7 years. Whether this trait can be attributed to dissimilar lifestyles or genetic (regulatory) factors remains to be elucidated. Herein, we demonstrate that in the nematode Caenorhabditis elegans, the significantly longer lifespan of hermaphrodites-which are essentially females capable of sperm production-over males is established by TRA-1, the terminal effector of the sex-determination pathway. This transcription factor directly controls the expression of daf-16/FOXO, which functions as a major target of insulin/IGF-1 signaling (IIS) and key modulator of aging across diverse animal phyla. TRA-1 extends hermaphrodite lifespan through promoting daf-16 activity. Furthermore, TRA-1 also influences reproductive growth in a DAF-16-dependent manner. Thus, the sex-determination machinery is an important regulator of IIS in this organism. These findings provide a mechanistic insight into how longevity and development are specified unequally in the two genders. As TRA-1 is orthologous to mammalian GLI (glioma-associated) proteins, a similar sex-specific mechanism may also operate in humans to determine lifespan.


Assuntos
Caenorhabditis elegans/genética , Processos de Determinação Sexual/genética , Envelhecimento , Animais , Feminino , Masculino , Fatores Sexuais
16.
Brain Res ; 1657: 368-376, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28065565

RESUMO

Absence epileptic activity was analyzed during pregnancy, the postpartum period and after weaning to establish alterations of seizures throughout the reproductive cycle. Wistar Albino Glaxo Rijswijk (WAG/Rij) rats were used in the study as a model of absence epilepsy and because their seizures do not interfere with rearing offspring. The number of spike-wave discharges (SWDs) was gradually elevated from the 19th pregnancy day to delivery. Meanwhile, the characteristics of individual SWDs did not change suggesting that SWD generation remained the same. In the postpartum and postweaning periods, the number of SWDs was not increased in the absence of pups. However, returning the pups to mothers resulted in a markedly elevated number of SWDs for 1h. If pups were taken away after 30min, the number of SWDs dropped immediately suggesting that the presence of pups increased the SWD number. The time mothers spent with the litter and in kyphosis suckling posture were in correlation with their SWD number further suggesting the importance of interaction with pups in SWD induction. Suckling elevates prolactin levels but surprisingly, its intracerebroventricular injection markedly reduced SWD number in suckled WAG/Rij mothers suggesting that the SWD-inducing effect of suckling is not mediated by prolactin. Rather, the elevated prolactin level may provide some protection against pro-epileptic effects of suckling. In conclusion, we first identified periods within the reproductive cycle with increased absence epileptic activity, implying that more attention should be devoted to epileptic activity changes in mothers.


Assuntos
Modelos Animais de Doenças , Epilepsia Tipo Ausência/fisiopatologia , Comportamento Materno/fisiologia , Complicações na Gravidez/fisiopatologia , Ratos Wistar , Animais , Cateteres de Demora , Eletrocorticografia , Eletrodos Implantados , Feminino , Lactação , Privação Materna , Mães , Período Pós-Parto , Postura/fisiologia , Gravidez , Prolactina/administração & dosagem , Prolactina/metabolismo , Córtex Somatossensorial/fisiopatologia
17.
J Proteomics ; 159: 54-66, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28286321

RESUMO

To establish synaptic proteome changes associated with motherhood, we isolated synaptosome fractions from the hypothalamus of mother rats and non-maternal control females at the 11th postpartum day. Proteomic analysis by two-dimensional differential gel electrophoresis combined with mass spectrometric protein identification established 26 significant proteins, 7 increasing and 19 decreasing protein levels in the dams. The altered proteins are mainly involved in energy homeostasis, protein folding, and metabolic processes suggesting the involvement of these cellular processes in maternal adaptations. The decrease in a significantly altered protein, complement component 1q subcomponent-binding protein (C1qbp) was validated with Western blotting. Furthermore, immunohistochemistry showed its presence in hypothalamic fibers and terminals in agreement with its presence in synaptosomes. We also found the expression of C1qbp in different hypothalamic nuclei including the preoptic area and the paraventricular hypothalamic nucleus at the protein and at the mRNA level using immunohistochemistry and in situ hybridization histochemistry, respectively. Bioinformatical network analysis revealed that cytokines, growth factors, and protein kinases are common regulators, which indicates a complex regulation of the proteome change in mothers. The results suggest that maternal responsiveness is associated with synaptic proteins level changes in the hypothalamus, and that growth factors and cytokines may govern these alterations. BIOLOGICAL SIGNIFICANCE: The period of motherhood is accompanied with several behavioral, neuroendocrine, emotional and metabolic adaptations in the brain. Although it is established that various hypothalamic networks participate in the maternal adaptations of the rodent brain, our knowledge on the molecular background of these alterations remains seriously limited. In the present study, we first determined that the functional alterations of the maternal brain can be detected at the level of the synaptic proteome in the hypothalamus. Independent confirmation of synaptic localization, and also the established decrease in the level of C1qbp protein suggest the validity of the data. Common regulators of altered proteins belonging to the growth factor and cytokine family suggest that the synaptic adaptation is governed by these extracellular signals and future studies should focus on their specific roles. Our study was also the first to describe the expression pattern of C1qbp in the hypothalamus, a protein potentially involved in mitochondrial and neuroimmunological regulations of synaptic plasticity. Its presence in the preoptic area responsible for maternal behaviors and also in the paraventricular hypothalamic and arcuate nuclei regulating hormonal levels suggests that the same proteins may be involved in different aspects of maternal adaptations. The conclusions of the present work contribute to establishing the molecular alterations that determine different maternal adaptations in the brain. Since maternal changes are models of neuronal plasticity in all social interactions, the reported results can affect a wide field of molecular and behavioral neuroscience.


Assuntos
Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Período Pós-Parto/metabolismo , Proteoma/biossíntese , Animais , Feminino , Período Pós-Parto/fisiologia , Ratos , Ratos Wistar
18.
Brain Struct Funct ; 222(2): 781-798, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27300187

RESUMO

Recent selective stimulation and ablation of galanin neurons in the preoptic area of the hypothalamus established their critical role in control of maternal behaviors. Here, we identified a group of galanin neurons in the anterior commissural nucleus (ACN), and a distinct group in the medial preoptic area (MPA). Galanin neurons in ACN but not the MPA co-expressed oxytocin. We used immunodetection of phosphorylated STAT5 (pSTAT5), involved in prolactin receptor signal transduction, to evaluate the effects of suckling-induced prolactin release and found that 76 % of galanin cells in ACN, but only 12 % in MPA were prolactin responsive. Nerve terminals containing tuberoinfundibular peptide 39 (TIP39), a neuropeptide that mediates effects of suckling on maternal motivation, were abundant around galanin neurons in both preoptic regions. In the ACN and MPA, 89 and 82 % of galanin neurons received close somatic appositions, with an average of 2.9 and 2.6 per cell, respectively. We observed perisomatic innervation of galanin neurons using correlated light and electron microscopy. The connection was excitatory based on the glutamate content of TIP39 terminals demonstrated by post-embedding immunogold electron microscopy. Injection of the anterograde tracer biotinylated dextran amine into the TIP39-expressing posterior intralaminar complex of the thalamus (PIL) demonstrated that preoptic TIP39 fibers originate in the PIL, which is activated by suckling. Thus, galanin neurons in the preoptic area of mother rats are innervated by an excitatory neuronal pathway that conveys suckling-related information. In turn, they can be topographically and neurochemically divided into two distinct cell groups, of which only one is affected by prolactin.


Assuntos
Animais Lactentes , Galanina/metabolismo , Comportamento Materno/fisiologia , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Comissuras Telencefálicas/metabolismo , Animais , Feminino , Ácido Glutâmico/metabolismo , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/ultraestrutura , Neuropeptídeos/metabolismo , Ocitocina/metabolismo , Fosforilação , Área Pré-Óptica/ultraestrutura , Prolactina/metabolismo , Ratos , Ratos Wistar , Fator de Transcrição STAT5/metabolismo , Comissuras Telencefálicas/citologia , Tálamo/metabolismo , Tálamo/ultraestrutura
19.
Mini Rev Med Chem ; 14(13): 1033-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25382017

RESUMO

Adenosine (Ado) and some non-adenosine (non-Ado) nucleosides including inosine (Ino), guanosine (Guo) and uridine (Urd) are modulatory molecules in the central nervous system (CNS), regulating different physiological and pathophysiological processes in the brain such as sleep and epilepsy. Indeed, different drugs effective on adenosinergic system (e.g., Ado metabolism inhibitors, agonists and antagonists of Ado receptors) are being used in drug development for the treatment of epileptic disorders. Although (i) endogenous Ino, Guo and Urd showed anticonvulsant/antiepileptic effects (e.g., in quinolinic acid - induced seizures and in different epilepsy models such as hippocampal kindling models), and (ii) there is a need to generate new and more effective antiepileptic drugs for the treatment of drug-resistant epilepsies, our knowledge about antiepileptic influence of non-Ado nucleosides is far from complete. Thus, in this review article, we give a short summary of anticonvulsant/antiepileptic effects and mechanisms evoked by Ino, Guo, and Urd. Finally, we discuss some non-Ado nucleoside derivatives and their structures, which may be candidates as potential antiepileptic agents.


Assuntos
Anticonvulsivantes/farmacologia , Nucleosídeos/farmacologia , Adenosina/química , Adenosina/farmacologia , Animais , Anticonvulsivantes/química , Guanosina/química , Guanosina/farmacologia , Humanos , Inosina/química , Inosina/farmacologia , Nucleosídeos/química , Uridina/química , Uridina/farmacologia
20.
Methods Enzymol ; 451: 521-40, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19185738

RESUMO

Autophagy (cellular self-eating) is a highly regulated, lysosome-mediated catabolic process of eukaryotic cells to segregate by a special membrane and subsequently degrade their own constituents during development or starvation. Electron microscopy analysis reveals autophagic elements in various cell types of the nematode Caenorhabditis elegans, whose genome contains counterparts of several yeast genes involved in autophagy. Genetic manipulation inactivating autophagy-related genes in C. elegans causes defects in development, affects dauer larval morphogenesis, accelerates aging thereby shortening life span, reduces cell size, decreases survival during starvation, promotes apoptotic cell death, and protects neurons from undergoing hyperactive ion channel- or neurotoxin-induced degeneration. These results implicate autophagy in various developmental and cellular functions such as reproductive growth, aging, and cell growth, as well as cell survival and loss. This chapter discusses methods of inactivating C. elegans autophagy genes by RNA interference, testing the resistance of autophagy-deficient nematodes to starvation-induced stress, handling mutants carrying a deletion in the autophagy pathway, and monitoring autophagic activity by using LysoTracker Red dye or reporters labeled with green fluorescent protein. Such methods may be adaptable to identify additional roles of autophagy in development and cellular function, and may also help to detect the intracellular accumulation of autophagy proteins and monitor autophagosome formation.


Assuntos
Autofagia/genética , Caenorhabditis elegans/fisiologia , Animais , Autofagia/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , Mutação , Fagossomos/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Inanição/genética , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA