Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Phys ; 43(4): 481-492, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28875391

RESUMO

A novel image-charge detection technique was used to investigate the mechanical elasticity of bare bacterial spores during high-velocity impact. Spores of Bacillus subtilis introduced to vacuum using electrospray and aerodynamic acceleration impacted and rebounded off of a glass plate. A dual-stage, asymmetric image-charge detector measured the velocity and direction of each spore both before and after impact with the glass surface. Two ranges of impact velocity were investigated, with average initial velocities of 197 ± 17 and 145 ± 12 m/s. Impacts were strongly inelastic, with most of the translational kinetic energy lost upon impact, similar to polystyrene particles of similar size under similar impact velocities. Specifically, 69% (± 16%) and 74% (± 11%) of initial kinetic energy was lost in impacts at the two velocity ranges, respectively. The average coefficients of restitution for the two velocity regimes were 0.53 ± 0.15 and 0.49 ± 0.12. There was no statistically significant difference in the fractional kinetic energy loss between these two populations. The variance of these results is much larger than experiments using polystyrene spheres of comparable size. These results imply significant plastic deformation of the spore-a striking result given that spores of this strain of B. subtilis are known to survive impacts on glass at these velocities. Triboelectric charge transfer during impact was also observed. Although much is known about spore elasticity from static measurements, this is the first study to investigate the elastic properties of bacterial spores in a dynamic scenario, as well as the first demonstration of an image charge detector for measurements of rebounding particles.


Assuntos
Bacillus subtilis/fisiologia , Imagem Molecular , Esporos Bacterianos/fisiologia , Bacillus subtilis/metabolismo , Transporte de Elétrons , Vidro/química , Processamento de Imagem Assistida por Computador , Cinética , Esporos Bacterianos/metabolismo , Propriedades de Superfície
2.
Rev Sci Instrum ; 84(11): 114101, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24289408

RESUMO

We present the first reported instance of an image-charge detector for charged particles in which detection elements are patterned onto printed circuit boards. In contrast to conventional techniques involving separately machined and positioned segments of metal tubing, this technique is much simpler to assemble, align, and connect to electrical wiring, with no loss in sensitivity. The performance of single-stage and 5-stage charge detectors is demonstrated using electrospray-charged, micrometer-size polystyrene spheres. Both velocity and charge of each particle are measured. Multiple detection stages--which require no extra effort to pattern or setup compared with a single stage--result in an ensemble averaging effect, improving the detection limit over what can be achieved with a single-stage detector. A comparison is made between the printed circuit board detector and a conventional tubular charge detector and found to be statistically equivalent. These results demonstrate and illustrate that devices for detection, analysis, and/or manipulation of charged particles and ions can be made using printed circuit boards rather than using separately fabricated metal electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA