Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
PLoS Pathog ; 16(5): e1008106, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463830

RESUMO

Toxoplasma gondii possesses an armada of secreted virulent factors that enable parasite invasion and survival into host cells. These factors are contained in specific secretory organelles, the rhoptries, micronemes and dense granules that release their content upon host cell recognition. Dense granules are secreted in a constitutive manner during parasite replication and play a crucial role in modulating host metabolic and immune responses. While the molecular mechanisms triggering rhoptry and microneme release upon host cell adhesion have been well studied, constitutive secretion remains a poorly explored aspect of T. gondii vesicular trafficking. Here, we investigated the role of the small GTPase Rab11A, a known regulator of exocytosis in eukaryotic cells. Our data revealed an essential role of Rab11A in promoting the cytoskeleton driven transport of dense granules and the release of their content into the vacuolar space. Rab11A also regulates transmembrane protein trafficking and localization during parasite replication, indicating a broader role of Rab11A in cargo exocytosis at the plasma membrane. Moreover, we found that Rab11A also regulates extracellular parasite motility and adhesion to host cells. In line with these findings, MIC2 secretion was altered in Rab11A-defective parasites, which also exhibited severe morphological defects. Strikingly, by live imaging we observed a polarized accumulation of Rab11A-positive vesicles and dense granules at the apical pole of extracellular motile and invading parasites suggesting that apically polarized Rab11A-dependent delivery of cargo regulates early secretory events during parasite entry into host cells.


Assuntos
Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Adesão Celular , Linhagem Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Parasitos/metabolismo , Transporte Proteico , Proteínas de Protozoários , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia
2.
PLoS Pathog ; 16(4): e1008440, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32294143

RESUMO

In flea-borne plague, blockage of the flea's foregut by Yersinia pestis hastens transmission to the mammalian host. Based on microscopy observations, we first suggest that flea blockage results from primary infection of the foregut and not from midgut colonization. In this model, flea infection is characterized by the recurrent production of a mass that fills the lumen of the proventriculus and encompasses a large number of Y. pestis. This recurrence phase ends when the proventricular cast is hard enough to block blood ingestion. We further showed that ymt (known to be essential for flea infection) is crucial for cast production, whereas the hmsHFRS operon (known to be essential for the formation of the biofilm that blocks the gut) is needed for cast consolidation. By screening a library of mutants (each lacking a locus previously known to be upregulated in the flea gut) for biofilm formation, we found that rpiA is important for flea blockage but not for colonization of the midgut. This locus may initially be required to resist toxic compounds within the proventricular cast. However, once the bacterium has adapted to the flea, rpiA helps to form the biofilm that consolidates the proventricular cast. Lastly, we used genetic techniques to demonstrate that ribose-5-phosphate isomerase activity (due to the recent gain of a second copy of rpiA (y2892)) accentuated blockage but not midgut colonization. It is noteworthy that rpiA is an ancestral gene, hmsHFRS and rpiA2 were acquired by the recent ancestor of Y. pestis, and ymt was acquired by Y. pestis itself. Our present results (i) highlight the physiopathological and molecular mechanisms leading to flea blockage, (ii) show that the role of a gene like rpiA changes in space and in time during an infection, and (iii) emphasize that evolution is a gradual process punctuated by sudden jumps.


Assuntos
Insetos Vetores/microbiologia , Peste/transmissão , Sifonápteros/microbiologia , Yersinia pestis/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Sistema Digestório/microbiologia , Feminino , Humanos , Insetos Vetores/fisiologia , Masculino , Camundongos , Óperon , Peste/microbiologia , Sifonápteros/fisiologia , Yersinia pestis/genética
3.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012472

RESUMO

Microbial agents have promise for the bioremediation of Pb(II)-polluted environments and wastewater, the biodecontamination of foods, and the alleviation of toxicity in living organisms. The dairy bacterium Propionibacterium freudenreichii is poorly able to remove Pb(II) from aqueous solution at 25 ppm, ranging from 0 to 10% of initial concentration. Here, we report on an original strong enhancement of this activity (ranging from 75% to 93%, p < 0.01) following the addition of a polysorbate detergent (Tween® 80) during or either shortly after the growth of a P. freudenreichii culture. We evaluated the optimal Tween® 80 concentration for pretreatment conditions, documented the role of other detergents, and explored the possible mechanisms involved. Our results reveal a novel, environmentally friendly, low-cost pretreatment procedure for enhancing the selective removal of lead from water by probiotic-documented bacteria.


Assuntos
Propionibacterium freudenreichii , Propionibacterium , Chumbo , Polissorbatos , Água
4.
PLoS Pathog ; 13(4): e1006331, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28430827

RESUMO

Toxoplasma gondii possesses a highly polarized secretory system, which efficiently assembles de novo micronemes and rhoptries during parasite replication. These apical secretory organelles release their contents into host cells promoting parasite invasion and survival. Using a CreLox-based inducible knock-out strategy and the ddFKBP over-expression system, we unraveled novel functions of the clathrin adaptor complex TgAP1. First, our data indicate that AP1 in T. gondii likely functions as a conserved heterotetrameric complex composed of the four subunits γ, ß, µ1, σ1 and interacts with known regulators of clathrin-mediated vesicular budding such as the unique ENTH-domain containing protein, which we named Epsin-like protein (TgEpsL). Disruption of the µ1 subunit resulted in the mis-sorting of microneme proteins at the level of the Trans-Golgi-Network (TGN). Furthermore, we demonstrated that TgAP1 regulates rhoptry biogenesis by activating rhoptry protein exit from the TGN, but also participates in the post-Golgi maturation process of preROP compartments into apically anchored club-shaped mature organelles. For this latter activity, our data indicate a specific functional relationship between TgAP1 and the Rab5A-positive endosome-like compartment. In addition, we unraveled an original role for TgAP1 in the regulation of parasite division. APµ1-depleted parasites undergo normal daughter cell budding and basal complex assembly but fail to segregate at the end of cytokinesis.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Animais , Divisão Celular , Clatrina/genética , Clatrina/metabolismo , Citocinese , Endossomos/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Complexo de Golgi/metabolismo , Espectrometria de Massas , Modelos Biológicos , Organelas/metabolismo , Transporte Proteico , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/ultraestrutura , Rede trans-Golgi/metabolismo
5.
Microb Pathog ; 103: 129-134, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27993700

RESUMO

Staphylococcus aureus (S. aureus) is one of several opportunistic microbial pathogens associated with many healthcare problems. In the present study, S. aureus was assessed for its biofilm-forming ability on materials routinely used in dental offices, including stainless steel (SS), polyethylene (PE), and polyvinyl chloride (PVC). Materials that were tested were characterized for roughness (Ra) and surface free energy (SFE). The adhesion forces exerted by S. aureus to each substratum were investigated using atomic force microscopy (AFM), and biofilm formation was quantitatively assessed by crystal violet staining assay. AFM measurements demonstrated that the strongest adhesion forces (20 nN) were exerted on the PE surfaces (P < 0.05) and depended more on Ra. In addition, the results of biofilm formation capability indicated that S. aureus exhibited more affinity to SS materials when compared to the other materials (P < 0.05). This ability of biofilm formation seems to be more correlated to SFE (R = 0.65). Hence, control of the surface properties of materials used in dental practices is of crucial importance for preventing biofilm formation on dental materials to be used for patients' dental care.


Assuntos
Aderência Bacteriana , Infecção Hospitalar , Consultórios Odontológicos , Infecções Oportunistas , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Biofilmes , Humanos , Microscopia de Força Atômica , Staphylococcus aureus/ultraestrutura , Propriedades de Superfície
6.
Methods ; 75: 61-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25667106

RESUMO

Autophagy is a predominant eukaryotic mechanism for the engulfment of "portions" of cytoplasm allowing their degradation to recycle metabolites. The autophagy is ubiquitous among the life kingdom revealing the importance of this pathway that appears more complex than previously thought. Several reviews have already addressed how to monitor this pathway and have highlighted the existence of new routes such as the LC3-associated phagocytosis (LAP) and the non-canonical autophagy. The principal difference between autophagosomes and LAP vacuoles is that the former has two limiting membranes positives for LC3 whereas the latter has one. Herein, we propose to emphasize the use of correlative light electron microscopy (CLEM) to answer some autophagy's related questions. The structured illumination microscopy (SIM) relatively easy to implement allows to better observe the Atg proteins recruitment and localization during the autophagy process. While LC3 recruitment is performed using light microscopy the ultrastructural morphological analysis of LC3-vacuoles is ascertained by electron microscopy. Hence, these combined and correlated approaches allow to tackle the LAP vs. autophagosome issue.


Assuntos
Autofagia/genética , Citoplasma/ultraestrutura , Fagossomos/ultraestrutura , Citoplasma/metabolismo , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Yersinia
7.
J Cell Sci ; 125(Pt 3): 685-94, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22389403

RESUMO

Endosomes and autophagosomes are two vesicular compartments involved in the degradation and recycling of cellular material. They both undergo a maturation process and finally fuse with the lysosome. In mammals, the convergence between endosomes and autophagosomes is a multistep process that can generate intermediate vesicles named amphisomes. Using knockdowns and mutants of the ESCRT machinery (ESCRT-0-ESCRT-III, ATPase VPS-4) and the autophagic pathway (LGG-1, LGG-2, ATG-7, TOR), we analyzed in vivo the functional links between endosomal maturation and autophagy in Caenorhabditis elegans. We report here that, despite a strong heterogeneity of their developmental phenotypes, all ESCRT mutants present an accumulation of abnormal endosomes and autophagosomes. We show that this accumulation of autophagosomes is secondary to the formation of enlarged endosomes and is due to the induction of the autophagic flux and not a blockage of fusion with lysosomes. We demonstrate that the induction of autophagy is not responsible for the lethality of ESCRT mutants but has a protective role on cellular degradation. We also show that increasing the basal level of autophagy reduces the formation of enlarged endosomes in ESCRT mutants. Together, our data indicate that the induction of autophagy is a protective response against the formation of an abnormal vesicular compartment.


Assuntos
Autofagia/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Adaptação Fisiológica , Animais , Animais Geneticamente Modificados , Autofagia/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/antagonistas & inibidores , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Genes de Helmintos , Mutação , Fenótipo , Interferência de RNA
8.
Biochem Biophys Res Commun ; 445(2): 299-303, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24502945

RESUMO

We study the aggregation of a fragment of the neuronal protein Tau that contains part of the proline rich domain and of the microtubule binding repeats. When incubated at 37 °C with heparin, the fragment readily forms fibers as witnessed by Thioflavin T fluorescence. Electron microscopy and NMR spectroscopy show bundled ribbon like structures with most residues rigidly incorporated in the fibril. Without its cysteines, this fragment still forms fibers of a similar morphology, but with lesser Thioflavin T binding sites and more mobility for the C-terminal residues.


Assuntos
Cisteína/química , Proteínas tau/química , Proteínas tau/ultraestrutura , Cisteína/metabolismo , Heparina/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Proteínas tau/metabolismo
9.
Front Immunol ; 14: 1254276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841236

RESUMO

Bordetella pertussis is a highly contagious respiratory pathogen responsible for whooping-cough or pertussis. Despite high vaccination coverage worldwide, this gram-negative bacterium continues to spread among the population. B. pertussis is transmitted by aerosol droplets from an infected individual to a new host and will colonize its upper respiratory tract. Alveolar macrophages (AMs) are effector cells of the innate immune system that phagocytose B. pertussis and secrete both pro-inflammatory and antimicrobial mediators in the lungs. However, understanding their role in B. pertussis pathogenesis at the molecular level is hampered by the limited number of primary AMs that can be collected in vivo. In order to decipher the regulation of innate response induced by B. pertussis infection, we used for the first time self-renewing, non-transformed cells, called Max Planck Institute (MPI) cells, which are phenotypically and functionally very close to pulmonary AMs. Using optimized infection conditions, we characterized the entry and the clearance of B. pertussis within MPI macrophages. We showed that under these conditions, MPI cells exhibit a pro-inflammatory phenotype with the production of TNF, IL-1ß, IL-6 and MIP-2α, similarly to primary AMs purified from broncho-alveolar fluids of mice. In addition, we explored the yet uncharacterized role of the signal transduction activator of transcription (STAT) proteins family in the innate immune response to B. pertussis infection and showed for the first time the parallel regulation of pro-inflammatory cytokines by STAT3 and STAT5 in MPI macrophages infected by B. pertussis. Altogether, this work highlights the interest of using MPI cells for experiments optimization and preliminary data acquisition to understand B. pertussis interaction with AMs, and thus significantly reduce the number of animals to be sacrificed.


Assuntos
Macrófagos Alveolares , Coqueluche , Animais , Camundongos , Macrófagos Alveolares/metabolismo , Bordetella pertussis , Fator de Transcrição STAT5/metabolismo , Citocinas/metabolismo
10.
Biomed Phys Eng Express ; 9(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36745905

RESUMO

Recently, the development of electronic devices to extracellularly record the simultaneous electrical activities of numerous neurons has been blooming, opening new possibilities to interface and decode neuronal activity. In this work, we tested how the use of EDOT electropolymerization to tune post-fabrication materials could optimize the cell/electrode interface of such devices. Our results showed an improved signal-to-noise ratio, better biocompatibility, and a higher number of neurons detected in comparison with gold electrodes. Then, using such enhanced recordings with 2D neuronal cultures combined with fluorescent optical imaging, we checked the extent to which the positions of the recorded neurons could be estimated solely via their extracellular signatures. Our results showed that assuming neurons behave as monopoles, positions could be estimated with a precision of approximately tens of micrometers.


Assuntos
Técnicas de Cultura de Células , Neurônios , Microeletrodos , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Ouro
11.
Biosens Bioelectron ; 237: 115538, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506488

RESUMO

Microelectrode Arrays (MEAs) are popular tools for in vitro extracellular recording. They are often optimized by surface engineering to improve affinity with neurons and guarantee higher recording quality and stability. Recently, PEDOT:PSS has been used to coat microelectrodes due to its good biocompatibility and low impedance, which enhances neural coupling. Herein, we investigate on electro-co-polymerization of EDOT with its triglymated derivative to control valence between monomer units and hydrophilic functions on a conducting polymer. Molecular packing, cation complexation, dopant stoichiometry are governed by the glycolation degree of the electro-active coating of the microelectrodes. Optimal monomer ratio allows fine-tuning the material hydrophilicity and biocompatibility without compromising the electrochemical impedance of microelectrodes nor their stability while interfaced with a neural cell culture. After incubation, sensing readout on the modified electrodes shows higher performances with respect to unmodified electropolymerized PEDOT, with higher signal-to-noise ratio (SNR) and higher spike counts on the same neural culture. Reported SNR values are superior to that of state-of-the-art PEDOT microelectrodes and close to that of state-of-the-art 3D microelectrodes, with a reduced fabrication complexity. Thanks to this versatile technique and its impact on the surface chemistry of the microelectrode, we show that electro-co-polymerization trades with many-compound properties to easily gather them into single macromolecular structures. Applied on sensor arrays, it holds great potential for the customization of neurosensors to adapt to environmental boundaries and to optimize extracted sensing features.


Assuntos
Técnicas Biossensoriais , Microeletrodos , Eletrodos Implantados , Polímeros/química , Neurônios/fisiologia
12.
Front Microbiol ; 14: 1254728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808318

RESUMO

Despite the introduction of effective treatments for hepatitis C in clinics, issues remain regarding the liver disease induced by chronic hepatitis C virus (HCV) infection. HCV is known to disturb the metabolism of infected cells, especially lipid metabolism and redox balance, but the mechanisms leading to HCV-induced pathogenesis are still poorly understood. In an APEX2-based proximity biotinylation screen, we identified ACBD5, a peroxisome membrane protein, as located in the vicinity of HCV replication complexes. Confocal microscopy confirmed the relocation of peroxisomes near HCV replication complexes and indicated that their morphology and number are altered in approximately 30% of infected Huh-7 cells. Peroxisomes are small versatile organelles involved among other functions in lipid metabolism and ROS regulation. To determine their importance in the HCV life cycle, we generated Huh-7 cells devoid of peroxisomes by inactivating the PEX5 and PEX3 genes using CRISPR/Cas9 and found that the absence of peroxisomes had no impact on replication kinetics or infectious titers of HCV strains JFH1 and DBN3a. The impact of HCV on peroxisomal functions was assessed using sub-genomic replicons. An increase of ROS was measured in peroxisomes of replicon-containing cells, correlated with a significant decrease of catalase activity with the DBN3a strain. In contrast, HCV replication had little to no impact on cytoplasmic and mitochondrial ROS, suggesting that the redox balance of peroxisomes is specifically impaired in cells replicating HCV. Our study provides evidence that peroxisome function and morphology are altered in HCV-infected cells.

13.
Exp Hematol Oncol ; 12(1): 104, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072918

RESUMO

BACKGROUND: Triple-Negative Breast Cancer is particularly aggressive, and its metastasis to the brain has a significant psychological impact on patients' quality of life, in addition to reducing survival. The development of brain metastases is particularly harmful in triple-negative breast cancer (TNBC). To date, the mechanisms that induce brain metastasis in TNBC are poorly understood. METHODS: Using a human blood-brain barrier (BBB) in vitro model, an in vitro 3D organotypic extracellular matrix, an ex vivo mouse brain slices co-culture and in an in vivo xenograft experiment, key step of brain metastasis were recapitulated to study TNBC behaviors. RESULTS: In this study, we demonstrated for the first time the involvement of the precursor of Nerve Growth Factor (proNGF) in the development of brain metastasis. More importantly, our results showed that proNGF acts through TrkA independent of its phosphorylation to induce brain metastasis in TNBC. In addition, we found that proNGF induces BBB transmigration through the TrkA/EphA2 signaling complex. More importantly, our results showed that combinatorial inhibition of TrkA and EphA2 decreased TBNC brain metastasis in a preclinical model. CONCLUSIONS: These disruptive findings provide new insights into the mechanisms underlying brain metastasis with proNGF as a driver of brain metastasis of TNBC and identify TrkA/EphA2 complex as a potential therapeutic target.

14.
Acta Neuropathol Commun ; 10(1): 4, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34998435

RESUMO

The Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer's disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration. Systematic search for endosome regulators able to prevent BIN1iso1-induced neurodegeneration indicated that a defect at the early endosome level is responsible for the neurodegeneration. In human induced neurons (hiNs) and cerebral organoids, BIN1 knock-out resulted in the narrowing of early endosomes. This phenotype was rescued by BIN1iso1 but not BIN1iso9 expression. Finally, BIN1iso1 overexpression also led to an increase in the size of early endosomes and neurodegeneration in hiNs. Altogether, our data demonstrate that the AD susceptibility gene BIN1, and especially BIN1iso1, contributes to early-endosome size deregulation, which is an early pathophysiological hallmark of AD pathology.


Assuntos
Doença de Alzheimer/genética , Proteínas de Drosophila/genética , Endossomos/genética , Degeneração Neural/genética , Neurônios/patologia , Fatores de Transcrição/genética , Doença de Alzheimer/patologia , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Drosophila melanogaster , Endossomos/metabolismo , Endossomos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo
15.
Immunol Cell Biol ; 89(5): 619-29, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21116285

RESUMO

Mounting adaptive immune responses requires the cell surface expression of major histocompatibility class II molecules (MHC II) loaded with antigenic peptide. However, in the absence of antigenic stimuli, the surface population of MHC II is highly dynamic and exhibits a high turnover. Several studies have focused on the regulation of MHC II, and it is now recognized that ubiquitination is one key mechanism operating in the turnover of MHC II in B cells and dendritic cells. Here, we describe how the invariant chain (Ii) can prolong the half-life of MHC II through its action on the endocytic pathway. We find that in cells expressing intermediate-to-high levels of Ii, the half-life of MHC II is increased, with MHC II accumulating in slowly-maturing endosomes. The accumulation in endosomes is not due to retention of new MHC II directed from the endoplasmatic reticulum, as also mature, not Ii associated, MHC II is preserved. We suggest that this alternative endocytic pathway induced by Ii would serve to enhance the rate, quantity and diversity of MHC II antigen presentation by concentrating MHC II into specialized compartments and reducing the need for new MHC II synthesis upon antigen encounter.


Assuntos
Antígenos de Diferenciação de Linfócitos B/metabolismo , Endossomos/metabolismo , Antígenos HLA-DR/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Linhagem Celular , Membrana Celular/metabolismo , Endocitose/imunologia , Antígenos HLA-DR/genética , Meia-Vida , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Ligação Proteica/imunologia , Transporte Proteico/imunologia
16.
Pathogens ; 10(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557275

RESUMO

The hepatitis C virus (HCV) life cycle is a tightly regulated process, during which structural and non-structural proteins cooperate. However, the interplay between HCV proteins during genomic RNA replication and progeny virion assembly is not completely understood. Here, we studied the dynamics and intracellular localization of non-structural 5A protein (NS5A), which is a protein involved both in genome replication and encapsidation. An NS5A-eGFP (enhanced green fluorescent protein) tagged version of the strain JFH-1-derived wild-type HCV was compared to the corresponding assembly-deficient viruses Δcore, NS5A basic cluster 352-533 mutant (BCM), and serine cluster 451 + 454 + 457 mutant (SC). These analyses highlighted an increase of NS5A motility when the viral protein core was lacking. Although to a lesser extent, NS5A motility was also increased in the BCM virus, which is characterized by a lack of interaction of NS5A with the viral RNA, impairing HCV genome encapsidation. This observation suggests that the more static NS5A population is mainly involved in viral assembly rather than in RNA replication. Finally, NS4B exhibited a reduced co-localization with NS5A and lipid droplets for both Δcore and SC mutants, which is characterized by the absence of interaction of NS5A with core. This observation strongly suggests that NS5A is involved in targeting NS4B to lipid droplets (LDs). In summary, this work contributes to a better understanding of the interplay between HCV proteins during the viral life cycle.

17.
Nat Commun ; 12(1): 116, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414462

RESUMO

Apicomplexan parasites have evolved efficient and distinctive strategies for intracellular replication where the timing of emergence of the daughter cells (budding) is a decisive element. However, the molecular mechanisms that provide the proper timing of parasite budding remain unknown. Using Toxoplasma gondii as a model Apicomplexan, we identified a master regulator that controls the timing of the budding process. We show that an ApiAP2 transcription factor, TgAP2IX-5, controls cell cycle events downstream of centrosome duplication. TgAP2IX-5 binds to the promoter of hundreds of genes and controls the activation of the budding-specific cell cycle expression program. TgAP2IX-5 regulates the expression of specific transcription factors that are necessary for the completion of the budding cycle. Moreover, TgAP2IX-5 acts as a limiting factor that ensures that asexual proliferation continues by promoting the inhibition of the differentiation pathway. Therefore, TgAP2IX-5 is a master regulator that controls both cell cycle and developmental pathways.


Assuntos
Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/fisiologia , Proliferação de Células , Centrossomo , Replicação do DNA , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Organismos Geneticamente Modificados , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Cell Death Dis ; 11(5): 360, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398681

RESUMO

Cellular stress response contributes to epithelial defense in adaptation to environment changes. Galectins play a pivotal role in the regulation of this response in malignant cells. However, precise underlying mechanisms are largely unknown. Here we demonstrate that Galectin-3, a pro and anti-apoptotic lectin, is required for setting up a correct cellular response to stress by orchestrating several effects. First, Galectin-3 constitutes a key post-transcriptional regulator of stress-related mRNA regulons coordinating the cell metabolism, the mTORC1 complex or the unfolded protein response (UPR). Moreover, we demonstrated the presence of Galectin-3 with mitochondria-associated membranes (MAM), and its interaction with proteins located at the ER or mitochondrial membranes. There Galectin-3 prevents the activation and recruitment at the mitochondria of the regulator of mitochondria fission DRP-1. Accordingly, loss of Galectin-3 impairs mitochondrial morphology, with more fragmented and round mitochondria, and dynamics both in normal and cancer epithelial cells in basal conditions. Importantly, Galectin-3 deficient cells also display changes of the activity of the mitochondrial respiratory chain complexes, of the mTORC1/S6RP/4EBP1 translation pathway and reactive oxygen species levels. Regarding the ER, Galectin-3 did not modify the activities of the 3 branches of the UPR in basal conditions. However, Galectin-3 favours an adaptative UPR following ER stress induction by Thapsigargin treatment. Altogether, at the ER-mitochondria interface, Galectin-3 coordinates the functioning of the ER and mitochondria, preserves the integrity of mitochondrial network and modulates the ER stress response.


Assuntos
Proteínas Sanguíneas/metabolismo , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Galectinas/metabolismo , Mitocôndrias/metabolismo , Apoptose/genética , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Membranas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tapsigargina/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
19.
Nanoscale ; 11(21): 10320-10328, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31106790

RESUMO

Precise localization and biophysical characterization of cellular structures is a key to the understanding of biological processes happening both inside the cell and at the cell surface. Atomic force microscopy is a powerful tool to study the cell surface - topography, elasticity, viscosity, interactions - and also the viscoelastic behavior of the underlying cytoplasm, cytoskeleton or the nucleus. Here, we demonstrate the ability of atomic force microscopy to also map and characterize organelles and microorganisms inside cells, at the nanoscale, by combining stiffness tomography with super-resolution fluorescence and electron microscopy. By using this correlative approach, we could both identify and characterize intracellular compartments. The validation of this approach was performed by monitoring the stiffening effect according to the metabolic status of the mitochondria in living cells in real-time.


Assuntos
Membrana Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Citoplasma/ultraestrutura , Microscopia de Força Atômica , Microtúbulos/ultraestrutura , Elasticidade , Células HeLa , Humanos , Viscosidade
20.
Nat Microbiol ; 4(6): 972-984, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30911127

RESUMO

Bacterial virulence factors are attractive targets for the development of therapeutics. Type IV pili, which are associated with a remarkable array of properties including motility, the interaction between bacteria and attachment to biotic and abiotic surfaces, represent particularly appealing virulence factor targets. Type IV pili are present in numerous bacterial species and are critical for their pathogenesis. In this study, we report that trifluoperazine and related phenothiazines block functions associated with Type IV pili in different bacterial pathogens, by affecting piliation within minutes. Using Neisseria meningitidis as a paradigm of Gram-negative bacterial pathogens that require Type IV pili for pathogenesis, we show that piliation is sensitive to altered activity of the Na+ pumping NADH-ubiquinone oxidoreductase (Na+-NQR) complex and that these compounds probably altered the establishment of the sodium gradient. In vivo, these compounds exert a strong protective effect. They reduce meningococcal colonization of the human vessels and prevent subsequent vascular dysfunctions, intravascular coagulation and overwhelming inflammation, the hallmarks of invasive meningococcal infections. Finally, they reduce lethality. This work provides a proof of concept that compounds with activity against bacterial Type IV pili could beneficially participate in the treatment of infections caused by Type IV pilus-expressing bacteria.


Assuntos
Fímbrias Bacterianas/efeitos dos fármacos , Fímbrias Bacterianas/fisiologia , Infecções Meningocócicas/prevenção & controle , Neisseria meningitidis/efeitos dos fármacos , Fatores de Virulência , Animais , Antibacterianos/farmacologia , Vasos Sanguíneos/lesões , Vasos Sanguíneos/microbiologia , Vasos Sanguíneos/patologia , Combinação de Medicamentos , Complexo I de Transporte de Elétrons , Feminino , Fímbrias Bacterianas/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Bactérias Gram-Negativas , Humanos , Camundongos , Neisseria meningitidis/genética , Neisseria meningitidis/crescimento & desenvolvimento , Fenotiazinas/farmacologia , Pele/patologia , Transplante de Pele , ATPase Trocadora de Sódio-Potássio , Trifluoperazina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA