RESUMO
Ceratitis capitata (Wiedemann, 1824) is an insect of major economic importance in the mango orchards of the submedium of the São Francisco River Valley, the main area of mango production and exportation in Brazil. To provide alternatives for the management of C. capitata, toxic baits based on alpha-cypermethrin (Gelsura®) and spinosad (Success® 0.02 CB) were evaluated in three commercial mango experiments during two consecutive harvests: 2016/2017 (experiment 1 - area 1) and 2017/2018 (experiment 2 -area 2 and experiment 3 - area 3). According to the results, there was a large reduction in the infestation of C. capitata after five sequential applications of the alpha-cypermethrin (6 g.ha-1) and spinosad (0.38 g.ha-1) toxic baits performed at seven-day intervals during mango fruit ripening in all experiments and years (harvest) evaluated. Compared with the untreated plots, the plots with alpha-cypermethrin and spinosad applications showed a significant reduction in the damage induced (fallen fruits and/or on trees) by C. capitata. The management of C. capitata in mango orchards can include the use of the toxic bait based on alpha-cypermethrin, which represents an alternative to rotate with spinosad toxic bait in the São Francisco River Valley.
Assuntos
Ceratitis capitata , Inseticidas , Mangifera , Animais , Inseticidas/farmacologia , Controle de Insetos/métodosRESUMO
Ceratitis capitata (Wiedemann, 1824) is a significant insect pest of fruits produced worldwide and is capable of causing direct and indirect damage to fruit. Chemical control is the most frequently used management strategy, mainly involving organophosphate insecticides. However, the frequent use of this chemical group has resulted in unacceptable chemical residues on fruits. In this study, the toxicity of 18 insecticides was evaluated in adults and larvae of C. capitata in a laboratory. The organophosphate insecticides chlorpyrifos (Lorsban 480BR), phosmet (Imidan 500WP), and malathion (Malathion 1000EC); the spinosyns spinetoram (Delegate 250WG) and spinosad (Tracer); and the pyrethroid alpha-cypermethrin (Fastac 100SC) caused high mortality (>80%) in C. capitata adults in topical application bioassays and by ingestion when mixed with Biofruit 5% food lures. However, the insecticides chlorfenapyr (Pirate), spinetoram and chlorpyrifos produced a significant reduction in larval infestation of the fruits (67, 74, and 84% larval mortality, respectively). Insecticides based on spinosyns, alpha-cypermethrin, and cyantraniliprole are alternatives that can replace organophosphates in the management of C. capitata in the field.
Assuntos
Ceratitis capitata , Inseticidas , Tephritidae , Animais , Controle de Insetos , Larva , MalationRESUMO
Diachasmimorpha longicaudata (Ashmead, 1905) (Hymenoptera: Braconidae) is considered one of the main biological control agents of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). However, the application of toxic baits for the management of C. capitata might exert side effects on the parasitoid. The objective of this study was to evaluate the side effects of toxic bait formulations on D. longicaudata. The food attractants Anamed, 3% Biofruit, 1.5% CeraTrap, 1.25% Flyral, 3% Isca Samaritá, 3% Isca Samaritá Tradicional, and 7% sugarcane molasses mixed with an organophosphate insecticide [malathion, 2.0 grams of active ingredient (g a.i.) L-1] and the commercial formulation Gelsura (2.0 and 4.0 g a.i. L-1 alpha-cypermethrin) showed high toxicity to D. longicaudata adults (>90% mortality) after 96 h and were thus classified as harmful (Class 4). Similarly, 3% Isca Samaritá Tradicional and 7% sugarcane molasses in formulations with the insecticides spinosad and spinetoram (0.096 g a.i. L-1 or kg) were moderately harmful (Class 3). In contrast, the food attractants Anamed, 3% Biofruit, 1.5% CeraTrap, 1.25% Flyral, and 3% Isca Samaritá Tradicional in combination with spinosad and spinetoram and the formulation Success 0.02CB (0.096 g a.i. L-1 spinosad) were classified as harmless (<10% mortality up to 96 h, Class 1). Additionally, these formulations did not reduce the parasitism and emergence rate of the F1 generation of D. longicaudata in C. capitata larvae. Formulations of toxic baits based on spinosyn are suitable for the management of C. capitata together with the parasitoid D. longicaudata.
Assuntos
Composição de Medicamentos , Himenópteros/efeitos dos fármacos , Inseticidas/química , Inseticidas/toxicidade , Animais , Bioensaio , Controle de InsetosRESUMO
Ceratitis capitata (Wiedemann, 1824) is the main insect pest of fruits worldwide. The objective of this study was to evaluate the toxicity and residual effects of the ready-to-use toxic baits Success 0.02CB (0.24 g of active ingredient [a.i.] per liter of spinosad) and Gelsura (6 g of a.i./liter of alpha-cypermethrin) and to compare them with other food lures containing spinosad and malathion mixed with hydrolyzed protein (Biofruit 5% and Flyral 1.25%), Anamed without dilution or sugarcane molasses (7%) against adult C. capitata in laboratory and greenhouse trials. Ceratitis capitata adults were highly susceptible to all toxic bait formulations (mortality > 80%) until 96 h after exposure. The lowest LT50 (hours) of toxic baits were 2.32 (Gelsura at 4,000 mg/liter), 4.26 (Gelsura at 2,000 mg/liter), 4.28 (Anamed + malathion) and 4.89 (sugarcane molasses + malathion), while formulations containing spinosad (Biofruit, Flyral, Anamed and Success 0.02CB) showed LT50 of approximately 11 h. Without rain, Gelsura (2,000 mg/liter) and all spinosad formulations provided mortality superior to 80% 14 d after application. Gelsura and Anamed + spinosad showed higher resistance to a 5-mm simulated rain, similar to Anamed + malathion, while the other formulations had its efficacy decreased. All toxic baits were effective on adult C. capitata in residual experiments without rain while Anamed + spinosad caused high adult mortality after 5 to 25 mm rains. Gelsura and Anamed + spinosad can be used to replace toxic baits containing malathion for C. capitata population management.
Assuntos
Ceratitis capitata , Inseticidas , Tephritidae , Animais , Combinação de Medicamentos , Controle de Insetos , Macrolídeos , Malation , PiretrinasRESUMO
This research reports the terrestrial slug Meghimatium pictum (Stoliczka, 1873) (Stylommathophora: Philomycidae) as an agricultural pest for the first time in Southern Brazil vineyards. The species was found in densities exceeding 20 slugs.m-2 in Vitis labrusca L. vineyards at six municipalities of the Southern Brazil's viticulture region. It causes damage a loss by leaving residual mucus on grapes and by consuming grapes already perforated by other organisms, such as insects or birds, or mechanically damaged by in situ compression. The effectiveness of iron phosphate and metaldehyde baits on M. pictum was evaluated in laboratory experiments. Iron phosphate bait was more effective in controlling M. pictum (70%) than metaldehyde bait (15%).
O presente trabalho relata pela primeira vez a lesma terrestre Meghimatium pictum (Stoliczka, 1873) (Stylommathophora: Philomycidae) como uma praga agrícola causando danos em vinhedos no Sul do Brasil. Esta espécie foi encontrada em densidades superiores a 20 lesmas.m-2 danificando uvas da espécie Vitis labrusca L. em seis municípios da região vitícola do Sul do Brasil. O impacto econômico causado por M. pictum está associado ao movimento dos espécimes no dossel da videira e nas uvas, provocando a contaminação residual por muco e o consumo de uvas já perfuradas por outros organismos, tais como insetos ou aves, ou mecanicamente danificadas pela compressão in situ. A eficácia das iscas a base de fosfato de ferro e metaldeído sobre M. pictum também foi avaliada em condições de laboratório. A isca a base de fosfato de ferro foi mais eficiente no controle de M. pictum (70%) do que a isca a base de metaldeído (15%).