Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Behav Neurosci ; 135(2): 165-173, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34060873

RESUMO

The orbitofrontal cortex (OFC) plays a critical role in the flexible control of behaviors and has been the focus of increasing research interest. However, there have been a number of controversies around the exact theoretical role of the OFC. One potential source of these issues is the comparison of evidence from different studies, particularly across species, which focus on different specific sub-regions within the OFC. Furthermore, there is emerging evidence that there may be functional diversity across the OFC which may account for these theoretical differences. Therefore, in this review we consider evidence supporting functional heterogeneity within the OFC and how it relates to underlying anatomical heterogeneity. We highlight the importance of anatomical and functional distinctions within the traditionally defined OFC subregions across the medial-lateral axis, which are often not differentiated for practical and historical reasons. We then consider emerging evidence of even finer-grained distinctions within these defined subregions along the anterior-posterior axis. These fine-grained anatomical considerations reveal a pattern of dissociable, but often complementary functions within the OFC. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Córtex Pré-Frontal
2.
Neuroscience ; 460: 53-68, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609638

RESUMO

The orbitofrontal cortex (OFC) has been anatomically divided into a number of subregions along its medial-lateral axis, which behavioral research suggests have distinct functions. Recently, evidence has emerged suggesting functional diversity is also present along the anterior-posterior axis of the rodent OFC. However, the patterns of anatomical connections that underlie these differences have not been well characterized. Here, we use the retrograde tracer cholera toxin subunit B (CTB) to simultaneously label the projections into the anterior lateral (ALO), posterior lateral (PLO), and posterior ventral (PVO) portions of the rat OFC. Our methodological approach allowed us to simultaneously compare the density and input patterns into these OFC subdivisions. We observed distinct and topographically organized projection patterns into ALO, PLO, and PVO from the mediodorsal and the submedius nuclei of the thalamus. We also observed different levels of connectivity strength into these OFC subdivisions from the amygdala, motor cortex, sensory cortices and medial prefrontal cortical structures, including medial OFC, infralimbic and prelimbic cortices. Interestingly, while labelling in some of these input regions revealed only a gradient in connectivity strength, other regions seem to project almost exclusively to specific OFC subdivisions. Moreover, differences in input patterns between ALO and PLO were as pronounced as those between PLO and PVO. Together, our results support the existence of distinct anatomical circuits within lateral OFC along its anterior-posterior axis.


Assuntos
Tonsila do Cerebelo , Córtex Pré-Frontal , Animais , Córtex Cerebral , Vias Neurais , Lobo Parietal , Ratos , Tálamo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA