Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Sensors (Basel) ; 24(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39123949

RESUMO

The detection of magnetic nanoparticles in a liquid medium and the quantification of their concentration have the potential to improve the efficiency of several relevant applications in different fields, including medicine, environmental remediation, and mechanical engineering. To this end, sensors based on the magneto-impedance effect have attracted much attention due to their high sensitivity to the stray magnetic field generated by magnetic nanoparticles, their simple fabrication process, and their relatively low cost. To improve the sensitivity of these sensors, a multidisciplinary approach is required to study a wide range of soft magnetic materials as sensing elements and to customize the magnetic properties of nanoparticles. The combination of magneto-impedance sensors with ad hoc microfluidic systems favors the design of integrated portable devices with high specificity towards magnetic ferrofluids, allowing the use of very small sample volumes and making measurements faster and more reliable. In this work, a magneto-impedance sensor based on an amorphous Fe73.5Nb3Cu1Si13.5B9 wire as the sensing element is integrated into a customized millifluidic chip. The sensor detects the presence of magnetic nanoparticles in the ferrofluid and distinguishes the different stray fields generated by single-domain superparamagnetic iron oxide nanoparticles or magnetically blocked Co-ferrite nanoparticles.

2.
J Environ Manage ; 310: 114701, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217443

RESUMO

Three tailor-made magnetic metal-ceramic nanocomposites, obtained from zeolite A (ZA1 and ZA2) and a natural clinoptilolite (LB1), have been used as adsorbents to remove sulfanilamide (SA), a sulfonamide antibiotic of common use, from water. A patented process for the synthesis of nanocomposites has been suitably modified to maximize the efficiency of the SA removal, as well as to extend the applicability of the materials. The role played by the main process parameters (kinetic, pH, initial concentration of SA) has been characterized. The significant effect of the pH on the SA removal has been explained identifying two possibly coexisting mechanisms of SA adsorption, based on polar and hydrophobic interactions, respectively. The adsorption kinetics have been in all cases described by the pseudo second-order model. The adsorption isotherms obtained with ZA1 have been satisfactorily described by the Langmuir model, suggesting a monolayer adsorption of SA on the magnetic nanocomposites resulting from a uniform surface energy. The isotherms obtained with LB1 could be described by a more complex approach, deriving by the additive superposition of Langmuir and Sips models. In order to ensure an effective removal of the antibiotic and a proper recycle of the magnetic adsorbents, a sustainable regeneration procedure of the exhausted adsorbent has been developed, based on the treatment with a dilute solution of NaOH.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cerâmica , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Nanocompostos/química , Sulfanilamida , Poluentes Químicos da Água/química , Purificação da Água/métodos
3.
Sensors (Basel) ; 21(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34770724

RESUMO

Advances in nanofabrication techniques are undoubtedly needed to obtain nanostructured magnetic materials with physical and chemical properties matching the pressing and relentless technological demands of sensors. Solid-state dewetting is known to be a low-cost and "top-down" nanofabrication technique able to induce a controlled morphological transformation of a continuous thin film into an ordered nanoparticle array. Here, magnetic Fe70Pd30 thin film with 30 nm thickness is deposited by the co-sputtering technique on a monocrystalline (MgO) or amorphous (Si3N4) substrate and, subsequently, annealed to promote the dewetting process. The different substrate properties are able to tune the activation thermal energy of the dewetting process, which can be tuned by depositing on substrates with different microstructures. In this way, it is possible to tailor the final morphology of FePd nanoparticles as observed by advanced microscopy techniques (SEM and AFM). The average size and height of the nanoparticles are in the ranges 150-300 nm and 150-200 nm, respectively. Moreover, the induced spatial confinement of magnetic materials in almost-spherical nanoparticles strongly affects the magnetic properties as observed by in-plane and out-of-plane hysteresis loops. Magnetization reversal in dewetted FePd nanoparticles is mainly characterized by a rotational mechanism leading to a slower approach to saturation and smaller value of the magnetic susceptibility than the as-deposited thin film.

4.
Sci Technol Adv Mater ; 21(1): 424-434, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32939168

RESUMO

Sputtering and electrodeposition are among the most widespread techniques for metallic thin film deposition. Since these techniques operate under different principles, the resulting films typically show different microstructures even when the chemical composition is kept fixed. In this work, films of Fe70Pd30 were produced in a thickness range between 30 and 600 nm, using both electrodeposition and sputtering. The electrodeposited films were deposited under potentiostatic regime from an ammonia sulfosalicylic acid-based aqueous solution. Meanwhile, the sputtered films were deposited from a composite target in radio frequency regime. Both approaches were proven to yield high quality and homogenous films. However, their crystallographic structure was different. Although all films were polycrystalline and Fe and Pd formed a solid solution with a body-centered cubic structure, a palladium hydride phase was additionally detected in the electrodeposited films. The occurrence of this phase induced internal stress in the films, thereby influencing their magnetic properties. In particular, the thickest electrodeposited Fe70Pd30 films showed out-of-plane magnetic anisotropy, whereas the magnetization easy axis lied in the film plane for all the sputtered films. The domain pattern of the electrodeposited films was investigated by magnetic force microscopy. Finally, nanoindentation studies highlighted the high quality of both the sputtered and electrodeposited films, the former exhibiting higher reduced Young's modulus and Berkovich hardness values.

5.
Sensors (Basel) ; 20(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290270

RESUMO

An important research effort on the design of the magnetic particles is increasingly required to optimize the heat generation in biomedical applications, such as magnetic hyperthermia and heat-assisted drug release, considering the severe restrictions for the human body's exposure to an alternating magnetic field. Magnetic nanoparticles, considered in a broad sense as passive sensors, show the ability to detect an alternating magnetic field and to transduce it into a localized increase of temperature. In this context, the high biocompatibility, easy synthesis procedure and easily tunable magnetic properties of ferrite powders make them ideal candidates. In particular, the tailoring of their chemical composition and cation distribution allows the control of their magnetic properties, tuning them towards the strict demands of these heat-assisted biomedical applications. In this work, Co0.76Zn0.24Fe2O4, Li0.375Zn0.25Fe2.375O4 and ZnFe2O4 mixed-structure ferrite powders were synthesized in a 'dry gel' form by a sol-gel auto-combustion method. Their microstructural properties and cation distribution were obtained by X-ray diffraction characterization. Static and dynamic magnetic measurements were performed revealing the connection between the cation distribution and magnetic behavior. Particular attention was focused on the effect of Co2+ and Li+ ions on the magnetic properties at a magnetic field amplitude and the frequency values according to the practical demands of heat-assisted biomedical applications. In this context, the specific loss power (SLP) values were evaluated by ac-hysteresis losses and thermometric measurements at selected values of the dynamic magnetic fields.


Assuntos
Cobalto/química , Compostos Férricos/química , Lítio/química , Nanopartículas de Magnetita/química , Zinco/química , Materiais Biocompatíveis/química , Pós/química , Temperatura , Difração de Raios X
6.
Molecules ; 25(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295314

RESUMO

In this work, three novel magnetic metal-ceramic nanocomposites were obtained by thermally treating Fe-exchanged zeolites (either A or X) under reducing atmosphere at relatively mild temperatures (750-800 °C). The so-obtained materials were thoroughly characterized from the point of view of their physico-chemical properties and, then, used as magnetic adsorbents in the separation of the target gene factors V and RNASE and of the Staphylococcus aureus bacteria DNA from human blood. Such results were compared with those obtained by using a top ranking commercial separation system (namely, SiMAG-N-DNA by Chemicell). The results obtained by using the novel magnetic adsorbents were similar to (or even better than) those obtained by using the commercial system, both during manual and automated separations, provided that a proper protocol was adopted. Particularly, the novel magnetic adsorbents showed high sensitivity during tests performed with small volumes of blood. Finally, the feasible production of such magnetic adsorbents by an industrial process was envisaged as well.


Assuntos
Biomarcadores/análise , Biomarcadores/sangue , Fracionamento Químico/métodos , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanocompostos/química , Zeolitas/química , Fenômenos Químicos , Humanos , Temperatura , Difração de Raios X
7.
Small ; 14(49): e1803027, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30294862

RESUMO

Magnetic shape memory materials hold a great promise for next-generation actuation devices and systems for energy conversion, thanks to the intimate coupling between structure and magnetism in their martensitic phase. Here novel magnetic shape memory free-standing nanodisks are proposed, proving that the lack of the substrate constrains enables the exploitation of new microstructure-controlled actuation mechanisms by the combined application of different stimuli-i.e., temperature and magnetic field. The results show that a reversible areal strain (up to 5.5%) can be achieved and tuned in intensity and sign (i.e., areal contraction or expansion) by the application of a magnetic field. The mechanisms at the basis of the actuation are investigated by experiments performed at different length scales and directly visualized by several electron microscopy techniques, including electron holography, showing that thermo/magnetomechanical properties can be optimized by engineering the martensitic microstructure through epitaxial growth and lateral confinement. These findings represent a step forward toward the development of a new class of temperature-field controlled nanoactuators and smart nanomaterials.

8.
Biochim Biophys Acta Gen Subj ; 1861(6): 1545-1558, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27986628

RESUMO

BACKGROUND: Magnetic hysteresis loops areas and hyperthermia on magnetic nanoparticles have been studied with the aim of providing reliable and reproducible methods of measuring the specific absorption rate (SAR). METHODS: The SAR of Fe3O4 nanoparticles with two different mean sizes, and Ni1-xZnxFe2O4 ferrites with 0 ≤ x ≤ 0.8 has been measured with three approaches: static hysteresis loops areas, dynamic hysteresis loops areas and hyperthermia of a water solution. For dynamic loops and thermometric measurements, specific experimental setups have been developed, that operate at comparable frequencies (≈ 69kHz and ≈ 100kHz respectively) and rf magnetic field peak values (up to 100mT). The hyperthermia setup has been fully modelled to provide a direct measurement of the SAR of the magnetic nanoparticles by taking into account the heat exchange with the surrounding environment in non-adiabatic conditions and the parasitic heating of the water due to ionic currents. RESULTS: Dynamic hysteresis loops are shown to provide an accurate determination of the SAR except for superparamagnetic samples, where the boundary with a blocked regime could be crossed in dynamic conditions. Static hysteresis loops consistently underestimate the specific absorption rate but can be used to select the most promising samples. CONCLUSIONS: A means of reliably measure SAR of magnetic nanoparticles by different approaches for hyperthermia applications is presented and its validity discussed by comparing different methods. GENERAL SIGNIFICANCE: This work fits within the general subject of metrological traceability in medicine with a specific focus on magnetic hyperthermia. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.


Assuntos
Óxido Ferroso-Férrico/química , Hipertermia Induzida/métodos , Magnetismo/métodos , Nanopartículas de Magnetita/química , Nanomedicina/métodos , Absorção Fisico-Química , Modelos Químicos , Estrutura Molecular , Tamanho da Partícula , Relação Estrutura-Atividade , Temperatura , Difração de Raios X
9.
Sci Technol Adv Mater ; 17(1): 462-472, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877896

RESUMO

Nanoscale magnetic materials are the basis of emerging technologies to develop novel magnetoelectronic devices. Self-assembly of polystyrene nanospheres is here used to generate 2D hexagonal dot arrays on Fe50Pd50 thin films. This simple technique allows a wide-area patterning of a magnetic thin film. The role of disorder on functional magnetic properties with respect to conventional lithographic techniques is studied. Structural and magnetic characteristics have been investigated in arrays having different geometry (i.e. dot diameters, inter-dot distances and thickness). The interplay among microstructure and magnetization reversal is discussed. Magnetic measurements reveal a vortex domain configuration in all as-prepared films. The original domain structure changes drastically upon thermal annealing performed to promote the transformation of disordered A1 phase into the ordered, tetragonal L10 phase. First-order reversal magnetization curves have been measured to rule out the role of magnetic interaction among crystalline phases characterized by different magnetic coercivity.

10.
Sci Rep ; 14(1): 10704, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730042

RESUMO

Driving immobilized, single-domain magnetic nanoparticles at high frequency by square wave fields instead of sinusoidal waveforms leads to qualitative and quantitative improvements in their performance both as point-like heat sources for magnetic hyperthermia and as sensing elements in frequency-resolved techniques such as magnetic particle imaging and magnetic particle spectroscopy. The time evolution and the frequency spectrum of the cyclic magnetization of magnetite nanoparticles with random easy axes are obtained by means of a rate-equation method able to describe time-dependent effects for the particle sizes and frequencies of interest in most applications to biomedicine. In the presence of a high-frequency square-wave field, the rate equations are shown to admit an analytical solution and the periodic magnetization can be therefore described with accuracy, allowing one to single out effects which take place on different timescales. Magnetic hysteresis effects arising from the specific features of the square-wave driving field results in a breakthrough improvement of both the magnetic power released as heat to an environment in magnetic hyperthermia treatments and the magnitude of the third harmonic of the frequency spectrum of the magnetization, which plays a central role in magnetic particle imaging.

11.
Adv Sci (Weinh) ; : e2408273, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373716

RESUMO

Magnetostrictive materials are essential components in sensors, actuators, and energy-storage devices due to their ability to convert mechanical stress into changes in magnetic properties and vice-versa. However, their operation typically requires physical contact to apply stress or relies on magnetic field sources to control magnetic properties. This poses significant limitations to devices miniaturization and their integration into contactless technologies. This work reports on an approach that overcomes these limitations by using light to transfer mechanical stress to a magnetostrictive device, thereby achieving non-contact and reversible opto-mechanical control of its magnetic and electrical properties. The proposed solution combines a magnetostrictive Fe70Ga30 thin film with a photo-responsive Liquid Crystalline Network (LCN). Magnetic properties are modulated by changing the light wavelength and illumination time. Remarkably, the stable shape change of the LCN induced by ultraviolet (UV) light leads to the retention of magnetic properties even after the light is switched off, resulting in a magnetic memory effect with an energy consumption advantage over the use of conventional magnetic field applicators. The memory effect is erased by visible light, which releases the mechanical stress in the photoresponsive layer. Therefore, this new composite material creates a fully reconfigurable magnetic system controlled by light.

12.
Nanoscale ; 16(4): 1711-1723, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38087911

RESUMO

Magnetic oxygen-loaded nanodroplets (MOLNDs) are a promising class of nanomaterials dually sensitive to ultrasound and magnetic fields, which can be employed as nanovectors for drug delivery applications, particularly in the field of hypoxic tissue treatment. Previous investigations were primarily focused on the application of these hybrid systems for hyperthermia treatment, exploiting magnetic nanoparticles for heat generation and nanodroplets as carriers and ultrasound contrast agents for treatment progress monitoring. This work places its emphasis on the prospect of obtaining an oxygen delivery system that can be activated by both ultrasound and magnetic fields. To achieve this goal, Fe3O4 nanoparticles were employed to decorate and induce the magnetic vaporization of OLNDs, allowing oxygen release. We present an optimized method for preparing MOLNDs by decorating nanodroplets made of diverse fluorocarbon cores and polymeric coatings. Furthermore, we performed a series of characterizations for better understanding how magnetic decoration can influence the physicochemical properties of OLNDs. Our comprehensive analysis demonstrates the efficacy of magnetic stimulation in promoting oxygen release compared to conventional ultrasound-based methods. We emphasize the critical role of selecting the appropriate fluorocarbon core and polymeric coating to optimize the decoration process and enhance the oxygen release performance of MOLNDs.


Assuntos
Fluorocarbonos , Nanopartículas , Oxigênio , Sistemas de Liberação de Medicamentos , Ultrassonografia , Nanopartículas/química , Polímeros , Fluorocarbonos/química , Fenômenos Magnéticos
13.
Nanoscale Adv ; 5(16): 4080-4094, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37560417

RESUMO

An effective combination of magnetic hyperthermia and thermometry is shown to be implementable by using magnetic nanoparticles which behave either as a heat sources or as temperature sensors when excited at two different frequencies. Noninteracting magnetite nanoparticles are modeled as double-well systems and their magnetization is obtained by solving rate equations. Two temperature sensitive properties derived from the cyclic magnetization and exhibiting a linear dependence on temperature are studied and compared for monodisperse and polydisperse nanoparticles. The multifunctional effects enabling the combination of magnetic hyperthermia and thermometry are shown to depend on the interplay among nanoparticle size, intrinsic magnetic properties and driving-field frequency. Magnetic hyperthermia and thermometry can be effectively combined by properly tailoring the magnetic properties of nanoparticles and the driving-field frequencies.

14.
Nanomaterials (Basel) ; 13(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770455

RESUMO

The connection of multidisciplinary and versatile techniques capable of depositing and modeling thin films in multistep complex fabrication processes offers different perspectives and additional degrees of freedom in the realization of patterned magnetic materials whose peculiar physical properties meet the specific needs of several applications. In this work, a fast and cost-effective dealloying process is combined with a fast, low-cost, scalable electroless deposition technique to realize hybrid magnetic heterostructures. The gold nanoporous surface obtained by the dealloying of an Au40Si20Cu28Ag7Pd5 ribbon is used as a nanostructured substrate for the electrodeposition of cobalt. In the first steps of the deposition, the Co atoms fill the gold pores and arrange themselves into a patterned thin film with harder magnetic properties; then they continue their growth into an upper layer with softer magnetic properties. The structural characterization of the hybrid magnetic heterostructures is performed using an X-ray diffraction technique and energy-dispersive X-ray spectroscopy, while the morphology of the samples as a function of the electrodeposition time is characterized by images taken in top and cross-section view using scanning electron microscopy. Then, the structural and morphologic features are correlated with the room-temperature magnetic properties deduced from an alternating-gradient magnetometer's measurements of the hysteresis loop and first order reversal curves.

15.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770364

RESUMO

Dense and mesoporous FePd nanowires (NWs) with 45 to 60 at.% Pd content were successfully fabricated by template- and micelle-assisted pulsed potentiostatic electrodeposition using nanoporous anodic alumina and polycarbonate templates of varying pore sizes. An FePd electrolyte was utilized for obtaining dense NWs while a block copolymer, P-123, was added to this electrolyte as the micelle-forming surfactant to produce mesoporous NWs. The structural and magnetic properties of the NWs were investigated by electron microscopy, X-ray diffraction, and vibrating sample magnetometry. The as-prepared NWs were single phase with a face-centered cubic structure exhibiting 3.1 µm to 7.1 µm of length. Mesoporous NWs revealed a core-shell structure where the porosity was only witnessed in the internal volume of the NW while the outer surface remained non-porous. Magnetic measurements revealed that the samples displayed a soft ferromagnetic behavior that depended on the shape anisotropy and the interwire dipolar interactions. The mesoporous core and dense shell structure of the NWs were seen to be slightly affecting the magnetic properties. Moreover, mesoporous NWs performed excellently as SERS substrates for the detection of 4,4'-bipyridine, showing a low detection limit of 10-12 M. The signal enhancement can be attributed to the mesoporous morphology as well as the close proximity of the embedded NWs being conducive to localized surface plasmon resonance.

16.
Chemosphere ; 345: 140400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863212

RESUMO

Highly efficient, separable, and stable magnetic iron-based-photocatalysts produced from ultra-stable Y (USY) zeolite were applied, for the first time, to the photo-Fenton removal of phenol under solar light. USY Zeolite with a Si/Al molar ratio of 385 was impregnated under vacuum with an aqueous solution of Fe2+ ions and thermally treated (500-750 °C) in a reducing atmosphere. Three catalysts, Fe-USY500°C-2h, Fe-USY600°C-2h and Fe-USY750°C-2h, containing different amounts of reduced iron species entrapped in the zeolitic matrix, were obtained. The catalysts were thoroughly characterized by absorption spectrometry, X-ray powder diffraction with synchrotron source, followed by Rietveld analysis, X-ray photoelectron spectroscopy, N2 adsorption/desorption at -196 °C, high-resolution transmission electron microscopy and magnetic measurements at room temperature. The catalytic activity was evaluated in a recirculating batch photoreactor irradiated by solar light with online analysis of evolved CO2. Photo-Fenton results showed that the catalyst obtained by thermal treatment at 500 °C for 2 h under a reducing atmosphere (FeUSY-500°C-2h) was able to completely mineralize phenol in 120 min of irradiation time at pH = 4 owing to the presence of a higher content of entrapped nano-sized magnetite particles. The latter promotes the generation of hydroxyl radicals in a more efficient way than the Fe-USY catalysts prepared at 600 and 750 °C because of the higher Fe3O4 content in ultra-stable Y zeolite treated at 500 °C. The FeUSY-500°C-2h catalyst was recovered from the treated water through magnetic separation and reused five times without any significant worsening of phenol mineralization performances. The characterization of the FeUSY-500°C-2h after the photo-Fenton process demonstrated that it was perfectly stable during the reaction. The optimized catalyst was also effective in the mineralization of phenol in tap water. Finally, a possible photo-Fenton mechanism for phenol mineralization was assessed based on experimental tests carried out in the presence of scavenger molecules, demonstrating that hydroxyl radicals play a major role.


Assuntos
Fenol , Zeolitas , Fenol/química , Ferro/química , Fenóis , Água , Peróxido de Hidrogênio/química , Catálise
17.
ACS Omega ; 8(2): 2143-2154, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687092

RESUMO

Magnetic hyperthermia is an oncological therapy that exploits magnetic nanoparticles activated by radiofrequency magnetic fields to produce a controlled temperature increase in a diseased tissue. The specific loss power (SLP) of magnetic nanoparticles or the capability to release heat can be improved using surface treatments, which can reduce agglomeration effects, thus impacting on local magnetostatic interactions. In this work, Fe3O4 nanoparticles are synthesized via a coprecipitation reaction and fully characterized in terms of structural, morphological, dimensional, magnetic, and hyperthermia properties (under the Hergt-Dutz limit). Different types of surface coatings are tested, comparing their impact on the heating efficacy and colloidal stability, resulting that sodium citrate leads to a doubling of the SLP with a substantial improvement in dispersion and stability in solution over time; an SLP value of around 170 W/g is obtained in this case for a 100 kHz and 48 kA/m magnetic field.

18.
Sci Rep ; 12(1): 17503, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261483

RESUMO

Flexible materials have brought up a new era of application-based research in stretchable electronics and wearable devices in the last decade. Tuning of magnetic properties by changing the curvature of devices has significant impact in the new generation of sensor-based technologies. In this work, magnetostrictive FeGa thin films have been deposited on a flexible Kapton sheet to exploit the magneto-elastic coupling effect and modify the magnetic properties of the sample. The FeGa alloy has high magnetostriction constant and high tensile strength making its properties susceptible to external stress. Tensile or compressive strain generated by the convex or concave states influence the uniaxial magnetic anisotropy of the system. Low temperature measurements show a hard magnetic behavior and the presence of exchange-bias effect after field cooling to 2 K. The results obtained in this study prove essential for the development of flexible electronics.

19.
Nanoscale ; 13(7): 4103-4121, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33570053

RESUMO

Rate equations are used to study the dynamic magnetic properties of interacting magnetite nanoparticles viewed as double well systems (DWS) subjected to a driving field in the radio-frequency range. Dipole-dipole interaction among particles is modeled by inserting an ad-hoc term in the energy barrier to simulate the dependence of the interaction on both the interparticle distance and degree of dipole collinearity. The effective magnetic power released by an assembly of interacting nanoparticles dispersed in a diamagnetic host is shown to be a complex function of nanoparticle diameter, mean particle interdistance and frequency. Dipolar interaction markedly modifies the way a host material is heated by an assembly of embedded nanoparticles in magnetic hyperthermia treatments. Nanoparticle fraction and strength of the interaction can dramatically influence the amplitude and shape of the heating curves of the host material; the heating ability of interacting nanoparticles is shown to be either improved or reduced by their concentration in the host material. A frequency-dependent cut-off length of dipolar interactions is determined and explained. Particle polydispersity entailing a distribution of particle sizes brings about non-trivial effects on the heating curves depending on the strength of dipolar interaction.

20.
Nanomaterials (Basel) ; 11(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499056

RESUMO

FePd alloys in the thin film form represent a multipurpose and versatile material with relevant chemical and physical properties studied in different research fields. Moreover, the ability to manipulate and fine-tune the film surface with nanometric scale precision represents a degree of freedom useful to adapt these thin film properties to the demands of different desired applications. In this manuscript, Fe70Pd30 (at. %) thin films are prepared with a thickness of 50 and 200 nm by means of the widely used co-sputtering deposition technique. Subsequently, selective removal of the iron element from the alloy and the consequent surface diffusion of the palladium was induced by a dealloying treatment under free corrosion conditions in hydrochloric acid. The size and shape of the grains of the as-deposited thin films determine the dissolution rate of the iron element with a direct consequence not only on the surface morphology and the stoichiometry of the alloy but also on the wetting and magnetic properties of the sample. X-ray diffraction, Scanning Electron Microscopy (SEM) images, contact angle and magnetic measurements have been performed to provide a thorough characterisation of the fundamental properties of these nanostructured bimetallic thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA