Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 130(11): 1662-1681, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35440172

RESUMO

BACKGROUND: Perivascular fibrosis, characterized by increased amount of connective tissue around vessels, is a hallmark for vascular disease. Ang II (angiotensin II) contributes to vascular disease and end-organ damage via promoting T-cell activation. Despite recent data suggesting the role of T cells in the progression of perivascular fibrosis, the underlying mechanisms are poorly understood. METHODS: TF (transcription factor) profiling was performed in peripheral blood mononuclear cells of hypertensive patients. CD4-targeted KLF10 (Kruppel like factor 10)-deficient (Klf10fl/flCD4Cre+; [TKO]) and CD4-Cre (Klf10+/+CD4Cre+; [Cre]) control mice were subjected to Ang II infusion. End point characterization included cardiac echocardiography, aortic imaging, multiorgan histology, flow cytometry, cytokine analysis, aorta and fibroblast transcriptomic analysis, and aortic single-cell RNA-sequencing. RESULTS: TF profiling identified increased KLF10 expression in hypertensive human subjects and in CD4+ T cells in Ang II-treated mice. TKO mice showed enhanced perivascular fibrosis, but not interstitial fibrosis, in aorta, heart, and kidney in response to Ang II, accompanied by alterations in global longitudinal strain, arterial stiffness, and kidney function compared with Cre control mice. However, blood pressure was unchanged between the 2 groups. Mechanistically, KLF10 bound to the IL (interleukin)-9 promoter and interacted with HDAC1 (histone deacetylase 1) inhibit IL-9 transcription. Increased IL-9 in TKO mice induced fibroblast intracellular calcium mobilization, fibroblast activation, and differentiation and increased production of collagen and extracellular matrix, thereby promoting the progression of perivascular fibrosis and impairing target organ function. Remarkably, injection of anti-IL9 antibodies reversed perivascular fibrosis in Ang II-infused TKO mice and C57BL/6 mice. Single-cell RNA-sequencing revealed fibroblast heterogeneity with activated signatures associated with robust ECM (extracellular matrix) and perivascular fibrosis in Ang II-treated TKO mice. CONCLUSIONS: CD4+ T cell deficiency of Klf10 exacerbated perivascular fibrosis and multi-organ dysfunction in response to Ang II via upregulation of IL-9. Klf10 or IL-9 in T cells might represent novel therapeutic targets for treatment of vascular or fibrotic diseases.


Assuntos
Linfócitos T CD4-Positivos , Hipertensão , Angiotensina II/farmacologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce , Fibrose , Humanos , Interleucina-9 , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA
2.
Am J Transplant ; 23(4): 549-558, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740193

RESUMO

Face transplantation is a life-changing procedure for patients with severe composite facial defects. However, it is hampered by high acute rejection rates due to the immunogenicity of skin allograft and toxicity linked to high doses of immunosuppression. To reduce immunosuppression-associated complications, we, for the first time in face transplant recipients, used low-dose interleukin 2 (IL-2) therapy to expand regulatory T cells (Tregs) in vivo and to enhance immune modulation, under close immunological monitoring of peripheral blood and skin allograft. Low-dose IL-2 achieved a sustained expansion (∼4-fold to 5-fold) of circulating Tregs and a reduction (∼3.5-fold) of B cells. Post-IL-2 Tregs exhibited greater suppressive function, characterized by higher expression of TIM-3 and LAG3co-inhibitory molecules. In the skin allograft, Tregs increased after low-dose IL-2 therapy. IL-2 induced a distinct molecular signature in the allograft with reduced cytotoxicity-associated genes (granzyme B and perforin). Two complications were observed during the trial: one rejection event and an episode of autoimmune hemolytic anemia. In summary, this initial experience demonstrated that low-dose IL-2 therapy was not only able to promote immune regulation in face transplant recipients but also highlighted challenges related to its narrow therapeutic window. More specific targeted Treg expansion strategies are needed to translate this approach to the clinic.


Assuntos
Transplante de Face , Interleucina-2 , Humanos , Rejeição de Enxerto , Interleucina-2/administração & dosagem , Interleucina-2/imunologia , Projetos Piloto , Linfócitos T Reguladores
3.
Circulation ; 141(4): 301-312, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31735076

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common clinical arrhythmia and is associated with heart failure, stroke, and increased mortality. The myocardial substrate for AF is poorly understood because of limited access to primary human tissue and mechanistic questions around existing in vitro or in vivo models. METHODS: Using an MYH6:mCherry knock-in reporter line, we developed a protocol to generate and highly purify human pluripotent stem cell-derived cardiomyocytes displaying physiological and molecular characteristics of atrial cells. We modeled human MYL4 mutants, one of the few definitive genetic causes of AF. To explore non-cell-autonomous components of AF substrate, we also created a zebrafish Myl4 knockout model, which exhibited molecular, cellular, and physiologic abnormalities that parallel those in humans bearing the cognate mutations. RESULTS: There was evidence of increased retinoic acid signaling in both human embryonic stem cells and zebrafish mutant models, as well as abnormal expression and localization of cytoskeletal proteins, and loss of intracellular nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide + hydrogen. To identify potentially druggable proximate mechanisms, we performed a chemical suppressor screen integrating multiple human cellular and zebrafish in vivo endpoints. This screen identified Cx43 (connexin 43) hemichannel blockade as a robust suppressor of the abnormal phenotypes in both models of MYL4 (myosin light chain 4)-related atrial cardiomyopathy. Immunofluorescence and coimmunoprecipitation studies revealed an interaction between MYL4 and Cx43 with altered localization of Cx43 hemichannels to the lateral membrane in MYL4 mutants, as well as in atrial biopsies from unselected forms of human AF. The membrane fraction from MYL4-/- human embryonic stem cell derived atrial cells demonstrated increased phospho-Cx43, which was further accentuated by retinoic acid treatment and by the presence of risk alleles at the Pitx2 locus. PKC (protein kinase C) was induced by retinoic acid, and PKC inhibition also rescued the abnormal phenotypes in the atrial cardiomyopathy models. CONCLUSIONS: These data establish a mechanistic link between the transcriptional, metabolic and electrical pathways previously implicated in AF substrate and suggest novel avenues for the prevention or therapy of this common arrhythmia.


Assuntos
Fibrilação Atrial , Mutação , Miócitos Cardíacos , Cadeias Leves de Miosina , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Linhagem Celular , Conexina 43/genética , Conexina 43/metabolismo , Técnicas de Inativação de Genes , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Bioinformatics ; 36(3): 698-703, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504201

RESUMO

MOTIVATION: MicroRNAs (miRNAs) are small RNA molecules (∼22 nucleotide long) involved in post-transcriptional gene regulation. Advances in high-throughput sequencing technologies led to the discovery of isomiRs, which are miRNA sequence variants. While many miRNA-seq analysis tools exist, the diversity of output formats hinders accurate comparisons between tools and precludes data sharing and the development of common downstream analysis methods. RESULTS: To overcome this situation, we present here a community-based project, miRNA Transcriptomic Open Project (miRTOP) working towards the optimization of miRNA analyses. The aim of miRTOP is to promote the development of downstream isomiR analysis tools that are compatible with existing detection and quantification tools. Based on the existing GFF3 format, we first created a new standard format, mirGFF3, for the output of miRNA/isomiR detection and quantification results from small RNA-seq data. Additionally, we developed a command line Python tool, mirtop, to create and manage the mirGFF3 format. Currently, mirtop can convert into mirGFF3 the outputs of commonly used pipelines, such as seqbuster, isomiR-SEA, sRNAbench, Prost! as well as BAM files. Some tools have also incorporated the mirGFF3 format directly into their code, such as, miRge2.0, IsoMIRmap and OptimiR. Its open architecture enables any tool or pipeline to output or convert results into mirGFF3. Collectively, this isomiR categorization system, along with the accompanying mirGFF3 and mirtop API, provide a comprehensive solution for the standardization of miRNA and isomiR annotation, enabling data sharing, reporting, comparative analyses and benchmarking, while promoting the development of common miRNA methods focusing on downstream steps of miRNA detection, annotation and quantification. AVAILABILITY AND IMPLEMENTATION: https://github.com/miRTop/mirGFF3/ and https://github.com/miRTop/mirtop. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
MicroRNAs , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Transcriptoma
5.
Genome Res ; 27(1): 118-132, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27999094

RESUMO

Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%-4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome.


Assuntos
Elementos Alu/genética , Neoplasias do Colo/genética , Epigênese Genética , Genoma Humano/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
6.
Biochemistry ; 57(8): 1338-1348, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29360348

RESUMO

Thiolases catalyze the condensation of acyl-CoA thioesters through the Claisen condensation reaction. The best described enzymes usually yield linear condensation products. Using a combined computational/experimental approach, and guided by structural information, we have studied the potential of thiolases to synthesize branched compounds. We have identified a bulky residue located at the active site that blocks proper accommodation of substrates longer than acetyl-CoA. Amino acid replacements at such a position exert effects on the activity and product selectivity of the enzymes that are highly dependent on a protein scaffold. Among the set of five thiolases studied, Erg10 thiolase from Saccharomyces cerevisiae showed no acetyl-CoA/butyryl-CoA branched condensation activity, but variants at position F293 resulted the most active and selective biocatalysts for this reaction. This is the first time that a thiolase has been engineered to synthesize branched compounds. These novel enzymes enrich the toolbox of combinatorial (bio)chemistry, paving the way for manufacturing a variety of α-substituted synthons. As a proof of concept, we have engineered Clostridium's 1-butanol pathway to obtain 2-ethyl-1-butanol, an alcohol that is interesting as a branched model compound.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Acil Coenzima A/metabolismo , Hexanóis/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/genética , Domínio Catalítico , Redes e Vias Metabólicas , Modelos Moleculares , Engenharia de Proteínas/métodos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Nucleic Acids Res ; 40(22): 11490-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23066096

RESUMO

Methylation of a CpG island is a faithful marker of silencing of its associated gene. Different approaches report the methylation status of a CpG island based on the determination of one or a few CpG sites by assuming the homogeneity of methylation along the element. This strategy is frequently applied in both locus-specific and genome-wide studies, but often without a validation of the representativeness of the interrogated CpG site compared with the whole element. We have evaluated the predictive informativeness of the HpaII sites located in CpG islands using data from high-resolution methylome maps, which offer the possibility to assess the methylation homogeneity of each CpG island and to determine the reporter accuracy of single sites as surrogate markers. An excellent correlation was observed between the HpaII and CpG island methylation levels (r > 0.93). At the qualitative level, the predictive sensitivity of HpaII was >95% with >92% specificity for methylated CpG islands and >90% sensitivity with >95% specificity for unmethylated CpG islands. This analysis provides a global validation framework for strategies based on the use of the methylation-sensitive HpaII restriction enzyme.


Assuntos
Ilhas de CpG , Metilação de DNA , Genômica/métodos , Linhagem Celular , Desoxirribonuclease HpaII , Feminino , Marcadores Genéticos , Genoma Humano , Humanos
8.
iScience ; 27(1): 108699, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38299026

RESUMO

N,N-diethyl-meta-toluamide (DEET) is a commonly used synthetic insect repellent. Although the neurological effects of DEET have been widely investigated, its effects on the germline are less understood. Here, we show that exposure of the nematode Caenorhabditis elegans, which is highly predictive of mammalian reprotoxicity, resulting in internal DEET levels within the range detected in human biological samples, causes activation of p53/CEP-1-dependent germ cell apoptosis, altered meiotic recombination, chromosome abnormalities, and missegregation. RNA-sequencing analysis links DEET-induced alterations in the expression of genes related to redox processes and chromatin structure to reduced mitochondrial function, impaired DNA double-strand break repair progression, and defects during early embryogenesis. We propose that Caenorhabditis elegans exposure to DEET interferes with gene expression, leading to increased oxidative stress and altered chromatin structure, resulting in germline effects that pose a risk to reproductive health.

10.
J Clin Rheumatol ; 19(5): 272-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23872542

RESUMO

Multicentric reticulohistiocytosis (MRH) is a rare multisystem, granulomatous debilitating disease. It affects the skin with a nodular diffuse dermatitis and the joints with a severe, potentially deforming, and handicapping arthritis. No standardized therapy exists, it is a disease with heterogeneous severity, and therefore, a diversity of therapeutic responses has been published.Current experience with anti-tumor necrosis factor agents in disease-modifying antirheumatic drug-refractory MRH cases is encouraging, and other agents such as bisphosphonates have proven effective as well. Histological analysis of the granulomatous inflammatory lesions have shown the presence of cytokines including tumor necrosis factor α, interleukin 1, and interleukin 6; the presence of the latter makes tocilizumab a plausible alternative.In this article, we report a 35-year-old woman with MRH refractory to a combined scheme of prednisone and methotrexate, both at high doses, and who received tocilizumab achieving remission on both cutaneous and articular symptoms. Our patient markedly improved by the second infusion (8 mg/kg monthly), and after 9 infusions, she remained asymptomatic; no toxicity was detected. Tocilizumab could be an alternative for disease-modifying antirheumatic drug-refractory MRH.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antirreumáticos/uso terapêutico , Histiocitose de Células não Langerhans/tratamento farmacológico , Adulto , Feminino , Glucocorticoides/uso terapêutico , Humanos , Metotrexato/uso terapêutico , Prednisona/uso terapêutico
11.
Dev Cell ; 58(20): 2032-2047.e6, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37607547

RESUMO

Mechanosensory neurons innervating the skin underlie our sense of touch. Fast-conducting, rapidly adapting mechanoreceptors innervating glabrous (non-hairy) skin form Meissner corpuscles, while in hairy skin, they associate with hair follicles, forming longitudinal lanceolate endings. How mechanoreceptors develop axonal endings appropriate for their skin targets is unknown. We report that mechanoreceptor morphologies across different skin regions are indistinguishable during early development but diverge post-natally, in parallel with skin maturation. Neurons terminating along the glabrous and hairy skin border exhibit hybrid morphologies, forming both Meissner corpuscles and lanceolate endings. Additionally, molecular profiles of neonatal glabrous and hairy skin-innervating neurons largely overlap. In mouse mutants with ectopic glabrous skin, mechanosensory neurons form end-organs appropriate for the altered skin type. Finally, BMP5 and BMP7 are enriched in glabrous skin, and signaling through type I bone morphogenetic protein (BMP) receptors in neurons is critical for Meissner corpuscle morphology. Thus, mechanoreceptor morphogenesis is flexibly instructed by target tissues.


Assuntos
Mecanorreceptores , Neurônios , Camundongos , Animais , Mecanorreceptores/metabolismo , Pele/inervação , Tato/fisiologia , Cabelo
12.
Infez Med ; 31(3): 350-358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701383

RESUMO

The Duffy protein, a transmembrane molecule, acts as a receptor for various chemokines and facilitates binding between reticulocytes and the Plasmodium Duffy antigen binding protein. Duffy expression is associated with the Duffy chemokine receptor antigen genotype on chromosome 1 and exhibits variation across different geographic regions. Traditionally, the Duffy negative genotype and phenotype have been described to confer a certain level of protection against infection and symptom development. However, recent data suggest a shift in this behavior, with significantly higher prevalence observed in individuals with Duffy negative genotype or phenotype. Given that malaria is an endemic vector-borne disease in regions of Asia, Africa, and Latin America, posing a substantial global burden of disease and prioritizing public and global health, identifying evolutionary changes in infection and resistance patterns holds great importance for the design of strategies and reevaluation of conventional interventions. Hence, the aim of this review was to analyze the evolution of Plasmodium vivax and infection resistance patterns based on Duffy genotype and phenotype. The distribution of genotypes, phenotypes, and polymorphisms of P. vivax ligands and erythrocyte receptors varies geographically, notably resistance patterns of this microorganism in individuals with Duffy negative genotype and phenotype have significantly changed compared to studies conducted 30 years ago. The prevalence of vivax malaria in individuals with a Duffy negative status can reach up to 100%. Consequently, prioritizing research on this topic is essential for public health.

13.
Front Immunol ; 14: 1277365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38420512

RESUMO

Thymic epithelial cells are indispensable for T cell maturation and selection and the induction of central immune tolerance. The self-peptide repertoire expressed by medullary thymic epithelial cells is in part regulated by the transcriptional regulator Aire (Autoimmune regulator) and the transcription factor Fezf2. Due to the high complexity of mTEC maturation stages (i.e., post-Aire, Krt10+ mTECs, and Dclk1+ Tuft mTECs) and the heterogeneity in their gene expression profiles (i.e., mosaic expression patterns), it has been challenging to identify the additional factors complementing the transcriptional regulation. We aimed to identify the transcriptional regulators involved in the regulation of mTEC development and self-peptide expression in an unbiased and genome-wide manner. We used ATAC footprinting analysis as an indirect approach to identify transcription factors involved in the gene expression regulation in mTECs, which we validated by ChIP sequencing. This study identifies Fezf2 as a regulator of the recently described thymic Tuft cells (i.e., Tuft mTECs). Furthermore, we identify that transcriptional regulators of the ELF, ESE, ERF, and PEA3 subfamily of the ETS transcription factor family and members of the Krüppel-like family of transcription factors play a role in the transcriptional regulation of genes involved in late mTEC development and promiscuous gene expression.


Assuntos
Fatores de Transcrição , Células em Tufo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Células Epiteliais/metabolismo , Peptídeos/metabolismo
14.
Biology (Basel) ; 12(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36979076

RESUMO

COVID-19, an infection produced by the SARS-CoV-2 virus in humans, has rapidly spread to become a high-mortality pandemic. SARS-CoV-2 is a single-stranded RNA virus characterized by infecting epithelial cells of the intestine and lungs, binding to the ACE2 receptor present on epithelial cells. COVID-19 treatment is based on antivirals and antibiotics against symptomatology in addition to a successful preventive strategy based on vaccination. At this point, several variants of the virus have emerged, altering the effectiveness of treatments and thereby attracting attention to several alternative therapies, including immunobiotics, to cope with the problem. This review, based on articles, patents, and an in silico analysis, aims to address our present knowledge of the COVID-19 disease, its symptomatology, and the possible beneficial effects for patients if probiotics with the characteristics of immunobiotics are used to confront this disease. Moreover, two probiotic strains, L. fermentum UCO-979C and L. rhamnosus UCO-25A, with different effects demonstrated at our laboratory, are emphasized. The point of view of this review highlights the possible benefits of probiotics, particularly those associated with immunomodulation as well as the production of secondary metabolites, and their potential targets during SARS-CoV-2 infection.

15.
Atherosclerosis ; 350: 9-18, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35462240

RESUMO

BACKGROUND AND AIMS: Chronic vascular endothelial inflammation predisposes to atherosclerosis; however, the cell-autonomous roles for endothelial-expressing microRNAs (miRNAs) are poorly understood in this process. MiR-181b is expressed in several cellular constituents relevant to lesion formation. The aim of this study is to examine the role of genetic deficiency of the miR-181b locus in endothelial cells during atherogenesis. METHODS AND RESULTS: Using a proprotein convertase subtilisin/kexin type 9 (PCSK9)-induced atherosclerosis mouse model, we demonstrated that endothelial cell (EC)-specific deletion of miR-181a2b2 significantly promoted atherosclerotic lesion formation, cell adhesion molecule expression, and the influx of lesional macrophages in the vessel wall. Yet, endothelium deletion of miR-181a2b2 did not affect body weight, lipid metabolism, anti-inflammatory Ly6Clow or the pro-inflammatory Ly6Cinterm and Ly6Chigh fractions in circulating peripheral blood mononuclear cells (PBMCs), and pro-inflammatory or anti-inflammatory mediators in both bone marrow (BM) and PBMCs. Mechanistically, bulk RNA-seq and gene set enrichment analysis of ECs enriched from the aortic arch intima, as well as single cell RNA-seq from atherosclerotic lesions, revealed that endothelial miR-181a2b2 serves as a critical regulatory hub in controlling endothelial inflammation, cell adhesion, cell cycle, and immune response during atherosclerosis. CONCLUSIONS: Our study establishes that deficiency of a miRNA specifically in the vascular endothelium is sufficient to profoundly impact atherogenesis. Endothelial miR-181a2b2 deficiency regulates multiple key pathways related to endothelial inflammation, cell adhesion, cell cycle, and immune response involved in the development of atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Aterosclerose/patologia , Células Endoteliais/metabolismo , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Pró-Proteína Convertase 9/metabolismo
16.
Cell Rep ; 40(10): 111312, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070702

RESUMO

Down syndrome (DS), driven by an extra copy of chromosome 21 (HSA21), and fragile X syndrome (FXS), driven by loss of the RNA-binding protein FMRP, are two common genetic causes of intellectual disability and autism. Based upon the number of DS-implicated transcripts bound by FMRP, we hypothesize that DS and FXS may share underlying mechanisms. Comparing DS and FXS human pluripotent stem cell (hPSC) and glutamatergic neuron models, we identify increased protein expression of select targets and overlapping transcriptional perturbations. Moreover, acute upregulation of endogenous FMRP in DS patient cells using CRISPRa is sufficient to significantly reduce expression levels of candidate proteins and reverse 40% of global transcriptional perturbations. These results pinpoint specific molecular perturbations shared between DS and FXS that can be leveraged as a strategy for target prioritization; they also provide evidence for the functional relevance of previous associations between FMRP targets and disease-implicated genes.


Assuntos
Síndrome de Down , Síndrome do Cromossomo X Frágil , Células-Tronco Pluripotentes , Síndrome de Down/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo
17.
Stem Cell Reports ; 17(9): 1976-1990, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36055241

RESUMO

Human embryonic stem cells (hESCs) provide opportunities for cell replacement therapy of insulin-dependent diabetes. Therapeutic quantities of human stem cell-derived islets (SC-islets) can be produced by directed differentiation. However, preventing allo-rejection and recurring autoimmunity, without the use of encapsulation or systemic immunosuppressants, remains a challenge. An attractive approach is to transplant SC-islets, genetically modified to reduce the impact of immune rejection. To determine the underlying forces that drive immunogenicity of SC-islets in inflammatory environments, we performed single-cell RNA sequencing (scRNA-seq) and whole-genome CRISPR screen of SC-islets under immune interaction with allogeneic peripheral blood mononuclear cells (PBMCs). Data analysis points to "alarmed" populations of SC-islets that upregulate genes in the interferon (IFN) pathway. The CRISPR screen in vivo confirms that targeting IFNγ-induced mediators has beneficial effects on SC-islet survival under immune attack. Manipulating the IFN response by depleting chemokine ligand 10 (CXCL10) in SC-islet grafts confers improved survival against allo-rejection compared with wild-type grafts in humanized mice. These results offer insights into the nature of immune destruction of SC-islets during allogeneic responses and provide targets for gene editing.


Assuntos
Células-Tronco Embrionárias Humanas , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Transplante das Ilhotas Pancreáticas/métodos , Leucócitos Mononucleares , Camundongos
18.
Mol Metab ; 53: 101309, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34303878

RESUMO

OBJECTIVE: The mechanistic target of rapamycin complex 1 (mTORC1) is dynamically regulated by fasting and feeding cycles in the liver to promote protein and lipid synthesis while suppressing autophagy. However, beyond these functions, the metabolic response of the liver to feeding and insulin signaling orchestrated by mTORC1 remains poorly defined. Here, we determine whether ATF4, a stress responsive transcription factor recently found to be independently regulated by mTORC1 signaling in proliferating cells, is responsive to hepatic mTORC1 signaling to alter hepatocyte metabolism. METHODS: ATF4 protein levels and expression of canonical gene targets were analyzed in the liver following fasting and physiological feeding in the presence or absence of the mTORC1 inhibitor, rapamycin. Primary hepatocytes from wild-type or liver-specific Atf4 knockout (LAtf4KO) mice were used to characterize the effects of insulin-stimulated mTORC1-ATF4 function on hepatocyte gene expression and metabolism. Both unbiased steady-state metabolomics and stable-isotope tracing methods were employed to define mTORC1 and ATF4-dependent metabolic changes. RNA-sequencing was used to determine global changes in feeding-induced transcripts in the livers of wild-type versus LAtf4KO mice. RESULTS: We demonstrate that ATF4 and its metabolic gene targets are stimulated by mTORC1 signaling in the liver, in a hepatocyte-intrinsic manner by insulin in response to feeding. While we demonstrate that de novo purine and pyrimidine synthesis is stimulated by insulin through mTORC1 signaling in primary hepatocytes, this regulation was independent of ATF4. Metabolomics and metabolite tracing studies revealed that insulin-mTORC1-ATF4 signaling stimulates pathways of nonessential amino acid synthesis in primary hepatocytes, including those of alanine, aspartate, methionine, and cysteine, but not serine. CONCLUSIONS: The results demonstrate that ATF4 is a novel metabolic effector of mTORC1 in the liver, extending the molecular consequences of feeding and insulin-induced mTORC1 signaling in this key metabolic tissue to the control of amino acid metabolism.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fator 4 Ativador da Transcrição/deficiência , Ração Animal , Animais , Comportamento Alimentar , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais
19.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667197

RESUMO

BACKGROUNDRejection is the primary barrier to broader implementation of vascularized composite allografts (VCAs), including face and limb transplants. The immunologic pathways activated in face transplant rejection have not been fully characterized.METHODSUsing skin biopsies prospectively collected over 9 years from 7 face transplant patients, we studied rejection by gene expression profiling, histology, immunostaining, and T cell receptor sequencing.RESULTSGrade 1 rejection did not differ significantly from nonrejection, suggesting that it does not represent a pathologic state. In grade 2, there was a balanced upregulation of both proinflammatory T cell activation pathways and antiinflammatory checkpoint and immunomodulatory pathways, with a net result of no tissue injury. In grade 3, IFN-γ-driven inflammation, antigen-presenting cell activation, and infiltration of the skin by proliferative T cells bearing markers of antigen-specific activation and cytotoxicity tipped the balance toward tissue injury. Rejection of VCAs and solid organ transplants had both distinct and common features. VCA rejection was uniquely associated with upregulation of immunoregulatory genes, including SOCS1; induction of lipid antigen-presenting CD1 proteins; and infiltration by T cells predicted to recognize CD1b and CD1c.CONCLUSIONOur findings suggest that the distinct features of VCA rejection reflect the unique immunobiology of skin and that enhancing cutaneous immunoregulatory networks may be a useful strategy in combatting rejection.Trial registrationClinicalTrials.gov NCT01281267.FUNDINGAssistant Secretary of Defense and Health Affairs, through Reconstructive Transplant Research (W81XWH-17-1-0278, W81XWH-16-1-0647, W81XWH-16-1-0689, W81XWH-18-1-0784, W81XWH-1-810798); American Society of Transplantation's Transplantation and Immunology Research Network Fellowship Research Grant; Plastic Surgery Foundation Fellowship from the American Society of Plastic Surgeons; Novo Nordisk Foundation (NNF15OC0014092); Lundbeck Foundation; Aage Bangs Foundation; A.P. Moller Foundation for the Advancement of Medical Science; NIH UL1 RR025758.


Assuntos
Apresentação de Antígeno , Transplante de Face , Perfilação da Expressão Gênica , Rejeição de Enxerto/imunologia , Lipídeos/imunologia , Receptores de Antígenos de Linfócitos T , Pele/imunologia , Linfócitos T/imunologia , Feminino , Seguimentos , Rejeição de Enxerto/genética , Rejeição de Enxerto/patologia , Humanos , Masculino , Estudos Prospectivos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Pele/patologia
20.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107824

RESUMO

PDGF/VEGF ligands regulate a plethora of biological processes in multicellular organisms via autocrine, paracrine, and endocrine mechanisms. We investigated organ-specific metabolic roles of Drosophila PDGF/VEGF-like factors (Pvfs). We combine genetic approaches and single-nuclei sequencing to demonstrate that muscle-derived Pvf1 signals to the Drosophila hepatocyte-like cells/oenocytes to suppress lipid synthesis by activating the Pi3K/Akt1/TOR signaling cascade in the oenocytes. Functionally, this signaling axis regulates expansion of adipose tissue lipid stores in newly eclosed flies. Flies emerge after pupation with limited adipose tissue lipid stores and lipid level is progressively accumulated via lipid synthesis. We find that adult muscle-specific expression of pvf1 increases rapidly during this stage and that muscle-to-oenocyte Pvf1 signaling inhibits expansion of adipose tissue lipid stores as the process reaches completion. Our findings provide the first evidence in a metazoan of a PDGF/VEGF ligand acting as a myokine that regulates systemic lipid homeostasis by activating TOR in hepatocyte-like cells.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas do Ovo/metabolismo , Hepatócitos/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Transdução de Sinais/fisiologia , Animais , Drosophila melanogaster , Corpo Adiposo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA