RESUMO
A growing body of evidence suggests that inflammatory cytokines have a dualistic role in immunity. In this study, we sought to determine the direct effects of interferon-γ (IFN-γ) on the differentiation and maturation of human peripheral blood monocyte-derived dendritic cells (moDC). Here, we report that following differentiation of monocytes into moDC with granulocyte-macrophage colony-stimulating factor and interleukin-4, IFN-γ induces moDC maturation and up-regulates the co-stimulatory markers CD80/CD86/CD95 and MHC Class I, enabling moDC to effectively generate antigen-specific CD4(+) and CD8(+) T-cell responses for multiple viral and tumour antigens. Early exposure of monocytes to high concentrations of IFN-γ during differentiation promotes the formation of macrophages. However, under low concentrations of IFN-γ, monocytes continue to differentiate into dendritic cells possessing a unique gene-expression profile, resulting in impairments in subsequent maturation by IFN-γ or lipopolysaccharide and an inability to generate effective antigen-specific CD4(+) and CD8(+) T-cell responses. These findings demonstrate that IFN-γ imparts differential programmes on moDC that shape the antigen-specific T-cell responses they induce. Timing and intensity of exposure to IFN-γ can therefore determine the functional capacity of moDC.
Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Interferon gama/imunologia , Monócitos/citologia , Monócitos/imunologia , Linhagem Celular , Citocinas/biossíntese , Células Dendríticas/citologia , Citometria de Fluxo , Humanos , TranscriptomaRESUMO
Both early- and late-onset noninfectious pulmonary injury are important contributors to the nonrelapse mortality seen after allogeneic stem cell transplantation (allo-SCT), particularly in subjects conditioned with high-dose total body irradiation (TBI). To characterize the kinetics of recovery from pulmonary injury in long-term survivors, we collected data on 138 subjects who survived > 3 years (median survival, 10.2 years) after predominantly TBI-based allo-SCT from their HLA-matched siblings. Baseline pulmonary function tests served as the reference for subsequent measurements at 3, 5, 10, and 15 years for each survivor. The only parameter showing a clinically and statistically significant decline post-transplant was adjusted diffusion capacity of lung for carbon monoxide (DLCO), which reached a nadir at 5 years but surprisingly normalized at the 10-year mark. Multivariable modeling identified chronic graft-versus-host disease (P < .02) and abnormal baseline-adjusted DLCO (P < .03) as the only significant factors associated with the decline in adjusted DLCO at 5 years but excluded smoking, conditioning intensity, baseline C-reactive protein level, TBI dose to the lungs, disease, and demographic variables. In conclusion, pulmonary injury as monitored by the adjusted DLCO continues to deteriorate in the first 5 years after allo-SCT but recovers at 10 years.
Assuntos
Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Pulmão/fisiopatologia , Testes de Função Respiratória/métodos , Condicionamento Pré-Transplante/efeitos adversos , Transplante Autólogo/efeitos adversos , Adulto , Estudos Transversais , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Masculino , Sobreviventes , Condicionamento Pré-Transplante/métodos , Transplante Autólogo/métodosRESUMO
Delayed immune recovery is a characteristic feature of allogeneic hematopoietic stem cell transplantation in adult recipients. Although recipient thymic T-cell neogenesis contributes to T-cell regeneration after transplantation, thymic recovery in the transplant recipient decreases with increasing age, and is diminished by intensive preconditioning regimens and graft-versus-host disease. In adult recipients, most events that determine transplant success or failure occur during the period when the majority of circulating T cells is derived from the donor's post thymic T-cell repertoire. As a result, the make-up of the donor lymphocyte compartment may strongly influence immune recovery and transplant outcomes. The aim of this study was to examine donor lymphocyte counts in a series of patients undergoing an allogeneic hematopoietic stem cell transplant to identify the potential contribution of donor regulatory and conventional T lymphocyte populations to immune recovery and transplant outcomes. We examined donor lymphocyte subset counts in relation to post-transplant lymphocyte recovery and transplant events in 220 consecutive myeloablative, T-cell-depleted, HLA-identical sibling hematopoietic stem cell transplant recipients with hematologic malignancies. In a multivariate analysis, absolute numbers of donor CD4(+) recent thymic emigrants were associated with overall survival (P=0.032). The donors' absolute lymphocyte count and thymic production of regulatory T cells were both associated with extensive chronic graft-versus-host disease (P=0.002 and P=0.022, respectively). In conclusion, these results identify donor immune characteristics that are associated with lymphocyte recovery, extensive chronic graft-versus-host disease, and survival in the recipient following allogeneic hematopoietic stem cell transplantation. The study reported here was performed using peripheral blood samples drawn from donors and patients enrolled in the ClinicalTrials.gov-registered trials NCT00001623, NCT00001873, NCT00353860, NCT00066300, NCT00079391, and NCT00398346.
Assuntos
Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas , Contagem de Linfócitos , Linfopoese , Irmãos , Timo/fisiologia , Doadores de Tecidos , Adolescente , Adulto , Idoso , Criança , Feminino , Sobrevivência de Enxerto/imunologia , Doença Enxerto-Hospedeiro , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/mortalidade , Neoplasias Hematológicas/reabilitação , Neoplasias Hematológicas/terapia , Humanos , Subpopulações de Linfócitos , Masculino , Pessoa de Meia-Idade , Recidiva , Transplante Homólogo , Resultado do Tratamento , Adulto JovemRESUMO
BACKGROUND: Allogeneic hematopoietic stem cell transplantation is associated with profound changes in levels of various cytokines. Emphasis has been placed on conditioning-associated mucosal damage and neutropenia and associated bacterial translocation as the initiating conditions predisposing to acute graft-versus-host disease. The post-transplant period is, however, also associated with increases in certain homeostatic cytokines. It is unclear how much the homeostatic drive to lymphocyte recovery and the production of cytokines from the engrafting donor immune system determine cytokine fluctuations in the peri- and immediate post-transplant period. The aim of this study was to examine the contributions of the conditioning regimen, donor engraftment, infections, and graft-versus-host disease to fluctuations in cytokines involved in homeostasis and inflammation. DESIGN AND METHODS: We examined the levels of 33 cytokines in relation to peri- and post-transplant events such as conditioning regimen, chimerism, and acute graft-versus-host disease in myeloablative, non-T cell-replete HLA-identical sibling donor stem cell transplantation for hematologic malignancies. RESULTS: We identified two cytokine storms. The first occurred following conditioning and reached peak levels when all the leukocytes were at their lowest concentrations. The second cytokine storm occurred concurrently with hematopoietic reconstitution and subsided with the achievement of full donor lymphocyte chimerism. CONCLUSIONS: Our results indicate that both recipient-related and donor-related factors contribute to the changes in cytokine levels in the recipient following allogeneic hematopoietic stem cell transplantation. The study reported here was performed using plasma samples drawn from patients enrolled in the ClinicalTrials.gov-registered trials NCT00467961 and NCT00378534.
Assuntos
Citocinas/imunologia , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas , Agonistas Mieloablativos/uso terapêutico , Pancitopenia/imunologia , Condicionamento Pré-Transplante/métodos , Adulto , Idoso , Citocinas/biossíntese , Feminino , Doença Enxerto-Hospedeiro/prevenção & controle , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Teste de Histocompatibilidade , Humanos , Contagem de Leucócitos , Leucócitos/imunologia , Leucócitos/patologia , Masculino , Pessoa de Meia-Idade , Agonistas Mieloablativos/administração & dosagem , Pancitopenia/patologia , Irmãos , Equilíbrio Th1-Th2 , Quimeras de Transplante , Transplante HomólogoRESUMO
For the last two decades the immunotherapy of patients with solid and hematopoietic tumors has met with variable success. We have reviewed the field of tumor vaccines to examine what has worked and what has not, why this has been the case, how the anti-tumor responses were examined, and how we can make tumor immunity successful for the majority of individuals rather than for the exceptional patients who currently show successful immune responses against their tumors.
Assuntos
Vacinas Anticâncer/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Humanos , Imunoterapia , Antígenos de Histocompatibilidade Menor/imunologiaRESUMO
Increasing knowledge concerning the biology of hematologic malignancies as well as the role of the immune system in the control of these diseases has led to the development and approval of immunotherapies that are resulting in impressive clinical responses. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a hematologic malignancy Cancer Immunotherapy Guidelines panel consisting of physicians, nurses, patient advocates, and patients to develop consensus recommendations for the clinical application of immunotherapy for patients with multiple myeloma, lymphoma, and acute leukemia. These recommendations were developed following the previously established process based on the Institute of Medicine's clinical practice guidelines. In doing so, a systematic literature search was performed for high-impact studies from 2004 to 2014 and was supplemented with further literature as identified by the panel. The consensus panel met in December of 2014 with the goal to generate consensus recommendations for the clinical use of immunotherapy in patients with hematologic malignancies. During this meeting, consensus panel voting along with discussion were used to rate and review the strength of the supporting evidence from the literature search. These consensus recommendations focus on issues related to patient selection, toxicity management, clinical endpoints, and the sequencing or combination of therapies. Overall, immunotherapy is rapidly emerging as an effective therapeutic strategy for the management of hematologic malignances. Evidence-based consensus recommendations for its clinical application are provided and will be updated as the field evolves.
RESUMO
Cytomegalovirus (CMV) reactivation after stem cell transplantation can be treated with CMV-specific T cells, but current in vitro techniques using dendritic cells as antigen-presenting cells are time-consuming and expensive. To simplify the production of clinical grade CMV-specific T cells, we evaluated gene-modified activated T cells [antigen presenting T cells (T-APCs)] as a reliable and easily produced source of APCs to boost CD4+ and CD8+ T-cell responses against the immunodominant CMV antigen pp65. T-APCs expressing the full-length immunodominant CMV pp65 gene were used to stimulate the expansion of autologous T cells. After 10 to 14 days, the T cell lines were tested for antigen specificity by using the flow cytometric intracellular detection of interferon-gamma after stimulation for 6 hours with a pp65 peptide library of 15-mers, overlapping by 11 amino acids. Under optimal conditions, this technique induced a median 766-fold and a 652-fold expansion of pp65-specific CD4+ and CD8+ responder cells, respectively, in 15 T cell lines. In 13 of 15 T cell lines, over 10 antigen-specific CD4+ plus CD8+ T cells were generated starting with only 5x10 peripheral blood mononuclear cells, representing an over 3-log increase. These data indicate that T-APCs efficiently boost pp65-specific CD4+ and CD8+ T cell numbers to clinically useful levels. The approach has the advantage of using a single leukocyte collection from the donor to generate large numbers of CMV-specific T cells within a total 3-week culture period using only one stimulation of antigen.