Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Eur J Neurosci ; 43(3): 451-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26332731

RESUMO

Motor axons in peripheral nerves have the capacity to regenerate after injury. However, full functional motor recovery rarely occurs clinically, and this depends on the nature and location of the injury. Recent preclinical findings suggest that there may be a time after nerve injury where, while regrowth to the muscle successfully occurs, there is nevertheless a failure to re-establish motor function, suggesting a possible critical period for synapse reformation. We have now examined the temporal and anatomical determinants for the re-establishment of motor function after prolonged neuromuscular junction (NMJ) denervation in rats and mice. Using both sciatic transection-resuture and multiple nerve crush models in rats and mice to produce prolonged delays in reinnervation, we show that regenerating fibres reach motor endplates and anatomically fully reform the NMJ even after extended periods of denervation. However, in spite of this remarkably successful anatomical regeneration, after 1 month of denervation there is a consistent failure to re-establish functional recovery, as assessed by behavioural and electrophysiological assays. We conclude that this represents a failure in re-establishment of synaptic function, and the possible mechanisms responsible are discussed, as are their clinical implications.


Assuntos
Neurônios Motores/fisiologia , Regeneração Nervosa , Junção Neuromuscular/fisiologia , Traumatismos dos Nervos Periféricos/reabilitação , Nervo Isquiático/fisiologia , Animais , Denervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/cirurgia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Nervo Isquiático/cirurgia
2.
Elife ; 112022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35179483

RESUMO

Cannabidiol (CBD), a chemical found in the Cannabis sativa plant, is a clinically effective antiepileptic drug whose mechanism of action is unknown. Using a fluorescence-based thallium flux assay, we performed a large-scale screen and found enhancement of flux through heterologously expressed human Kv7.2/7.3 channels by CBD. Patch-clamp recordings showed that CBD acts at submicromolar concentrations to shift the voltage dependence of Kv7.2/7.3 channels in the hyperpolarizing direction, producing a dramatic enhancement of current at voltages near -50 mV. CBD enhanced native M-current in mouse superior cervical ganglion starting at concentrations of 30 nM and also enhanced M-current in rat hippocampal neurons. The potent enhancement of Kv2/7.3 channels by CBD may contribute to its effectiveness as an antiepileptic drug by reducing neuronal hyperexcitability.


Assuntos
Canabidiol/farmacologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Neurônios/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Neurônios/efeitos dos fármacos , Ratos
3.
Pain ; 163(12): 2326-2336, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35543646

RESUMO

ABSTRACT: The lack of sensitive and robust behavioral assessments of pain in preclinical models has been a major limitation for both pain research and the development of novel analgesics. Here, we demonstrate a novel data acquisition and analysis platform that provides automated, quantitative, and objective measures of naturalistic rodent behavior in an observer-independent and unbiased fashion. The technology records freely behaving mice, in the dark, over extended periods for continuous acquisition of 2 parallel video data streams: (1) near-infrared frustrated total internal reflection for detecting the degree, force, and timing of surface contact and (2) simultaneous ongoing video graphing of whole-body pose. Using machine vision and machine learning, we automatically extract and quantify behavioral features from these data to reveal moment-by-moment changes that capture the internal pain state of rodents in multiple pain models. We show that these voluntary pain-related behaviors are reversible by analgesics and that analgesia can be automatically and objectively differentiated from sedation. Finally, we used this approach to generate a paw luminance ratio measure that is sensitive in capturing dynamic mechanical hypersensitivity over a period and scalable for high-throughput preclinical analgesic efficacy assessment.


Assuntos
Analgesia , Dor , Camundongos , Animais , Dor/diagnóstico , Dor/tratamento farmacológico , Manejo da Dor , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Medição da Dor
4.
J Neurosci ; 30(45): 15165-74, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21068322

RESUMO

TRPA1 is a nonselective cation channel expressed by nociceptors. Although it is widely accepted that TRPA1 serves as a broad irritancy receptor for a variety of reactive chemicals, its role in cold sensation remains controversial. Here, we demonstrate that mild cooling markedly increases agonist-evoked rat TRPA1 currents. In the absence of an agonist, even noxious cold only increases current amplitude slightly. These results suggest that TRPA1 is a key mediator of cold hypersensitivity in pathological conditions in which reactive oxygen species and proinflammatory activators of the channel are present, but likely plays a comparatively minor role in acute cold sensation. Supporting this, cold hypersensitivity can be induced in wild-type but not Trpa1(-/-) mice by subcutaneous administration of a TRPA1 agonist. Furthermore, the selective TRPA1 antagonist HC-030031 [2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide] reduces cold hypersensitivity in rodent models of inflammatory and neuropathic pain.


Assuntos
Temperatura Baixa , Hiperalgesia/metabolismo , Nociceptores/fisiologia , Sensação Térmica/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Eletrofisiologia , Gânglios Espinais/fisiologia , Hiperalgesia/fisiopatologia , Camundongos , Camundongos Knockout , Ratos , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/antagonistas & inibidores
5.
Brain ; 133(9): 2519-27, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20724292

RESUMO

Not all patients with nerve injury develop neuropathic pain. The extent of nerve damage and age at the time of injury are two of the few risk factors identified to date. In addition, preclinical studies show that neuropathic pain variance is heritable. To define such factors further, we performed a large-scale gene profiling experiment which plotted global expression changes in the rat dorsal root ganglion in three peripheral neuropathic pain models. This resulted in the discovery that the potassium channel alpha subunit KCNS1, involved in neuronal excitability, is constitutively expressed in sensory neurons and markedly downregulated following nerve injury. KCNS1 was then characterized by an unbiased network analysis as a putative pain gene, a result confirmed by single nucleotide polymorphism association studies in humans. A common amino acid changing allele, the 'valine risk allele', was significantly associated with higher pain scores in five of six independent patient cohorts assayed (total of 1359 subjects). Risk allele prevalence is high, with 18-22% of the population homozygous, and an additional 50% heterozygous. At lower levels of nerve damage (lumbar back pain with disc herniation) association with greater pain outcome in homozygote patients is P = 0.003, increasing to P = 0.0001 for higher levels of nerve injury (limb amputation). The combined P-value for pain association in all six cohorts tested is 1.14 E-08. The risk profile of this marker is additive: two copies confer the most, one intermediate and none the least risk. Relative degrees of enhanced risk vary between cohorts, but for patients with lumbar back pain, they range between 2- and 3-fold. Although work still remains to define the potential role of this protein in the pathogenic process, here we present the KCNS1 allele rs734784 as one of the first prognostic indicators of chronic pain risk. Screening for this allele could help define those individuals prone to a transition to persistent pain, and thus requiring therapeutic strategies or lifestyle changes that minimize nerve injury.


Assuntos
Canal de Potássio Kv1.1/genética , Dor/genética , Polimorfismo Genético/genética , Valina/genética , Animais , Doença Crônica , Estudos de Coortes , Compreensão , Biologia Computacional/métodos , Comparação Transcultural , Modelos Animais de Doenças , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Proteínas de Neurofilamentos , Neuropeptídeos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Dor/etiologia , Ratos
6.
Cell Rep ; 36(10): 109666, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496254

RESUMO

Although axonal damage induces rapid changes in gene expression in primary sensory neurons, it remains unclear how this process is initiated. The transcription factor ATF3, one of the earliest genes responding to nerve injury, regulates expression of downstream genes that enable axon regeneration. By exploiting ATF3 reporter systems, we identify topoisomerase inhibitors as ATF3 inducers, including camptothecin. Camptothecin increases ATF3 expression and promotes neurite outgrowth in sensory neurons in vitro and enhances axonal regeneration after sciatic nerve crush in vivo. Given the action of topoisomerases in producing DNA breaks, we determine that they do occur immediately after nerve damage at the ATF3 gene locus in injured sensory neurons and are further increased after camptothecin exposure. Formation of DNA breaks in injured sensory neurons and enhancement of it pharmacologically may contribute to the initiation of those transcriptional changes required for peripheral nerve regeneration.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Axônios/metabolismo , Quebras de DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , DNA Topoisomerases Tipo I/efeitos dos fármacos , Expressão Gênica/fisiologia , Camundongos Endogâmicos C57BL , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Crescimento Neuronal/fisiologia , Nervo Isquiático/metabolismo
7.
Nucleic Acids Res ; 34(11): e80, 2006 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-16835307

RESUMO

Non-viral vectors are promising vehicles for gene therapy but delivery of plasmid DNA to post-mitotic cells is challenging as nuclear entry is particularly inefficient. We have developed and evaluated a hybrid mRNA/DNA system designed to bypass the nuclear barrier to transfection and facilitate cytoplasmic gene expression. This system, based on co-delivery of mRNA(A64) encoding for T7 RNA polymerase (T7 RNAP) with a T7-driven plasmid, produced between 10- and 2200-fold higher gene expression in primary dorsal root ganglion neuronal (DRGN) cultures isolated from Sprague-Dawley rats compared to a cytomegalovirus (CMV)-driven plasmid, and 30-fold greater expression than the enhanced T7-based autogene plasmid pR011. Cell-free assays and in vitro transfections highlighted the versatility of this system with small quantities of T7 RNAP mRNA required to mediate expression at levels that were significantly greater than with the T7-driven plasmid alone or supplemented with T7 RNAP protein. We have also characterized a number of parameters, such as mRNA structure, intracellular stability and persistence of each nucleic acid component that represent important factors in determining the transfection efficiency of this hybrid expression system. The results from this study demonstrate that co-delivery of mRNA is a promising strategy to yield increased expression with plasmid DNA, and represents an important step towards improving the capability of non-viral vectors to mediate efficient gene transfer in cell types, such as in DRGN, where the nuclear membrane is a significant barrier to transfection.


Assuntos
Citoplasma/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação da Expressão Gênica , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Transfecção/métodos , Proteínas Virais/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Citoplasma/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Expressão Gênica , Humanos , Luciferases/análise , Luciferases/genética , Mitose , Biossíntese de Proteínas , Ratos , Ratos Sprague-Dawley , Transgenes , Proteínas Virais/metabolismo
8.
Brain ; 129(Pt 6): 1517-33, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16613894

RESUMO

When associated with the Nogo receptor (NgR), the transmembrane receptor p75NTR signals growth cone collapse. Arrest of CNS axon growth in vivo is mediated by CNS myelin-derived inhibitory ligands through either an unknown pathway after NgR- and Ca2+-dependent activation of the epidermal growth factor receptor (EGFR), and/or sequential Rho-A/ROCK/LIM-kinase/cofilin phosphorylation leading to actin depolymerization. Paradoxically, rat retinal ganglion cell (RGC) axons regenerate through the CNS myelin-rich transected optic nerve after intravitreal sciatic nerve grafting without inhibitory ligand neutralization. Here, we show that optic nerve regeneration in vivo correlates with Schwann cell-derived factor-induced cleavage of NgR and Nogo-A, and inactivation of p75NTR signalling by the induction of regulated intramembranous proteolysis (RIP) and the release of both extracellular (p75ECD) and intracellular (p75ICD) domains. Hence, Schwann cell-derived factors compromise inhibitory signalling by (i) antagonizing ligand/NgR binding with metalloproteinase-cleaved Nogo-A peptides; (ii) RIP of p75NTR; (iii) competitively blocking NgR/p75NTR clustering with soluble p75ECD; and (iv) consequent reduced downstream EGFR phosphorylation and suppression of Rho-A activation. Moreover, in RGC cultures, exogenous tumour necrosis- converting enzyme (TACE) initiates RIP of p75NTR, reduces EGFR phosphorylation, suppresses activation of Rho-A, cleaves the ECD from both NgR and TROY, and disinhibits neurotrophic factor (NTF) stimulated RGC neurite outgrowth in the presence of CNS myelin. Soluble NgRECD binds all CNS myelin-derived ligands and thus has the potential to act as an inhibitory signalling antagonist, but the role of TROY and its shed ectodomain in growth cone mobility is unknown. siRNA knockdown of p75NTR also inactivates Rho-A and disinhibits NTF-stimulated RGC neurite outgrowth in cultures with added CNS myelin. In all the above experimental paradigms, Schwann cell-derived factor/NTF-induced attenuation of NgR/p75NTR signalling suppresses EGFR activation, thereby potentiating axon growth disinhibition.


Assuntos
Axônios/fisiologia , Bainha de Mielina/fisiologia , Regeneração Nervosa/fisiologia , Células de Schwann/fisiologia , Proteínas ADAM/metabolismo , Proteínas ADAM/farmacologia , Proteína ADAM17 , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/fisiologia , Células Cultivadas , Receptores ErbB/fisiologia , Feminino , Proteína GAP-43/fisiologia , Proteínas Ligadas por GPI , Proteínas da Mielina , Fatores de Crescimento Neural/farmacologia , Receptor Nogo 1 , Nervo Óptico/fisiologia , Fosforilação , RNA Interferente Pequeno/genética , Ratos , Ratos Endogâmicos F344 , Receptores de Superfície Celular , Receptores de Peptídeos/fisiologia , Células Ganglionares da Retina/fisiologia , Regulação para Cima
9.
Nucleic Acids Res ; 33(9): e86, 2005 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15914665

RESUMO

Synthetic vectors based on reducible polycations consisting of histidine and polylysine residues (HIS RPCs) were evaluated for their ability to deliver nucleic acids. Initial experiments showed that RPC-based vectors with at least 70% histidine content mediated efficient levels of gene transfer without requirement for the endosomolytic agent chloroquine. Significant gene transfer was observed in a range of cell types achieving up to a 5-fold increase in the percentage of transfected cells compared to 25 kDa PEI, a gold standard synthetic vector. In contrast to 25 kDa PEI, HIS RPCs also mediated efficient transfer of other nucleic acids, including mRNA encoding green fluorescent protein in PC-3 cells and siRNA directed against the neurotrophin receptor p75(NTR) in post-mitotic cultures of rat dorsal root ganglion cell neurons. Experiments to elevate intracellular glutathione and linear profiling of cell images captured by multiphoton fluorescent microscopy highlighted that parameters such as the molecular weight and rate of cleavage of HIS RPCs were important factors in determining transfection activity. Altogether, these results demonstrate that HIS RPCs represent a novel and versatile type of vector that can be used for efficient cytoplasmic delivery of a broad range of nucleic acids. This should enable different or a combination of therapeutic strategies to be evaluated using a single type of polycation-based vector.


Assuntos
DNA/administração & dosagem , Vetores Genéticos/química , Histidina/química , Polilisina/química , Transfecção/métodos , Animais , Células COS , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Cloroquina/farmacologia , Vetores Genéticos/toxicidade , Glutationa/metabolismo , Humanos , Polietilenoimina/toxicidade , RNA Mensageiro/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Ratos , Sais/farmacologia
10.
Neuron ; 86(5): 1215-27, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26004914

RESUMO

Axon regeneration in the CNS requires reactivating injured neurons' intrinsic growth state and enabling growth in an inhibitory environment. Using an inbred mouse neuronal phenotypic screen, we find that CAST/Ei mouse adult dorsal root ganglion neurons extend axons more on CNS myelin than the other eight strains tested, especially when pre-injured. Injury-primed CAST/Ei neurons also regenerate markedly in the spinal cord and optic nerve more than those from C57BL/6 mice and show greater sprouting following ischemic stroke. Heritability estimates indicate that extended growth in CAST/Ei neurons on myelin is genetically determined, and two whole-genome expression screens yield the Activin transcript Inhba as most correlated with this ability. Inhibition of Activin signaling in CAST/Ei mice diminishes their CNS regenerative capacity, whereas its activation in C57BL/6 animals boosts regeneration. This screen demonstrates that mammalian CNS regeneration can occur and reveals a molecular pathway that contributes to this ability.


Assuntos
Axônios/fisiologia , Gânglios Espinais/fisiologia , Regeneração Nervosa/fisiologia , Neuropatia Ciática/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NOD , Neuropatia Ciática/patologia , Traumatismos da Medula Espinal/patologia
11.
Neuron ; 86(6): 1393-406, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26087165

RESUMO

Human genetic studies have revealed an association between GTP cyclohydrolase 1 polymorphisms, which decrease tetrahydrobiopterin (BH4) levels, and reduced pain in patients. We now show that excessive BH4 is produced in mice by both axotomized sensory neurons and macrophages infiltrating damaged nerves and inflamed tissue. Constitutive BH4 overproduction in sensory neurons increases pain sensitivity, whereas blocking BH4 production only in these cells reduces nerve injury-induced hypersensitivity without affecting nociceptive pain. To minimize risk of side effects, we targeted sepiapterin reductase (SPR), whose blockade allows minimal BH4 production through the BH4 salvage pathways. Using a structure-based design, we developed a potent SPR inhibitor and show that it reduces pain hypersensitivity effectively with a concomitant decrease in BH4 levels in target tissues, acting both on sensory neurons and macrophages, with no development of tolerance or adverse effects. Finally, we demonstrate that sepiapterin accumulation is a sensitive biomarker for SPR inhibition in vivo.


Assuntos
Biopterinas/análogos & derivados , Regulação da Expressão Gênica/fisiologia , Inflamação/metabolismo , Neuralgia/metabolismo , Oxirredutases do Álcool/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Biopterinas/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , GTP Cicloidrolase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Nervo Isquiático/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Sulfassalazina/uso terapêutico , Fatores de Tempo
12.
Mod Healthc ; 32(25): 37-40, 2002 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12120431

RESUMO

This is the fourth installment in a series of group discussions by top executives on key issues in healthcare today. Modern Healthcare and PricewaterhouseCoopers present Straight Talk. This session tackles the Health Insurance Portability and Accountability Act of 1996, or HIPAA, and where providers are today in the compliance process and where they need to go. The discussion was held on June 4, 2002 at Modern Healthcare's Chicago headquarters. The moderator was Jeffrey P. Fusile, Healthcare Consulting Partner with PricewaterhouseCoopers, Atlanta. The act protects consumers' health-insurance coverage after job changes. It also mandates significant modifications in the way providers handle the submission of claims and other related transactions and provides protection for the privacy and security of patients' health information. The law requires providers to comply with regulations governing electronic transactions and code sets by October 2003--assuming they file for an extension by October 2002--and privacy regulations by April 2003. The security compliance date has not yet been determined, but it is widely agreed that much of the security rules' requirements will be necessary to honor an organization's privacy commitments in April 2003.


Assuntos
Redes de Comunicação de Computadores/legislação & jurisprudência , Fidelidade a Diretrizes , Health Insurance Portability and Accountability Act , Sistemas de Informação Hospitalar/legislação & jurisprudência , Formulário de Reclamação de Seguro/legislação & jurisprudência , American Hospital Association , Confidencialidade/legislação & jurisprudência , Fiscalização e Controle de Instalações/legislação & jurisprudência , Responsabilidade Social , Estados Unidos
13.
Mod Healthc ; 32(51): 37-40, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12528240

RESUMO

The deadlines are looming for compliance with the transaction and code set requirements set forth in the Health Insurance Portability and Accountability Act of 1996 (HIPAA). If your hospital filed for an extension in October 2002, you need to begin testing transactions by April 2003 and sending transactions by October 2003. But don't rely on your technology vendors to give you the ability to send compliant transactions. While vendors can provide the correct computer data format, they can't gather the correct information. If you can't send a compliant transaction, the Centers for Medicare and Medicaid Services could reject your claims, drying up a big percentage of your cash flow.


Assuntos
Administração Financeira de Hospitais/legislação & jurisprudência , Fidelidade a Diretrizes/legislação & jurisprudência , Health Insurance Portability and Accountability Act , Formulário de Reclamação de Seguro/legislação & jurisprudência , Centers for Medicare and Medicaid Services, U.S. , Redes de Comunicação de Computadores , Setor de Assistência à Saúde/legislação & jurisprudência , Fatores de Tempo , Estados Unidos
14.
Elife ; 32014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25525749

RESUMO

The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4(+)SNS-Cre/TdTomato(+), 2) IB4(-)SNS-Cre/TdTomato(+), and 3) Parv-Cre/TdTomato(+) cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation.


Assuntos
Perfilação da Expressão Gênica , Células Receptoras Sensoriais/metabolismo , Transcrição Gênica , Animais , Separação Celular , Análise por Conglomerados , Citometria de Fluxo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Camundongos , Técnicas de Patch-Clamp , Análise de Componente Principal
15.
Pain ; 153(12): 2422-2431, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23021150

RESUMO

Peripheral nerve injury provokes heightened excitability of primary sensory afferents including nociceptors, and elicits ectopic activity in lesioned and neighboring intact nerve fibers. The major transmitter released by sensory afferents in the superficial dorsal horn of the spinal cord is glutamate. Glutamate is critically involved in nociceptive signaling and the development of neuropathic pain. We recorded miniature excitatory postsynaptic currents (mEPSCs) from neurons in lamina II of the rat dorsal horn to assess spontaneous synaptic activity after spared nerve injury (SNI), a model of chronic neuropathic pain. Following SNI, the frequency of mEPSCs doubled, indicating heightened glutamate release from primary afferents or spinal interneurons. Consistent with this finding, glutamate concentrations in the cerebrospinal fluid were elevated at 1 and 4 weeks after SNI. Transmitter uptake was insufficient to prevent the rise in extracellular glutamate as the expression of glutamate transporters remained unchanged or decreased. 2-Methyl-6-(phenylethynyl)pyridine hydrochloride, an antagonist of metabotropic glutamate receptor 5 (mGluR5), reduced the frequency of mEPSCs to its preinjury level, suggesting a positive feedback mechanism that involves facilitation of transmitter release by mGluR5 activation in the presence of high extracellular glutamate. Treatment with the ß-lactam antibiotic ceftriaxone increased the expression of glutamate transporter 1 (Glt1) in the dorsal horn after SNI, raised transmitter uptake, and lowered extracellular glutamate. Improving glutamate clearance prevented the facilitation of transmitter release by mGluR5 and attenuated neuropathic pain-like behavior. Balancing glutamate release and uptake after nerve injury should be an important target in the management of chronic neuropathic pain.


Assuntos
Dor Crônica/metabolismo , Ácido Glutâmico/metabolismo , Neuralgia/metabolismo , Neurotransmissores/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células do Corno Posterior/metabolismo , Animais , Dor Crônica/etiologia , Masculino , Neuralgia/etiologia , Traumatismos dos Nervos Periféricos/complicações , Ratos , Ratos Sprague-Dawley
18.
Mol Cell Neurosci ; 28(3): 509-23, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15737741

RESUMO

The presence of multiple axon growth inhibitors may partly explain why central nervous system axons are generally incapable of regenerating after injury. Using RNA interference (RNAi) in dorsal root ganglia neurons (DRGN), we demonstrate siRNA-mediated silencing of components of the inhibitory signalling cascade, including p75NTR, NgR and Rho-A mRNA, of 70%, 100% and 100% of the relevant protein, respectively, while changes in neither protein levels nor cellular immunoreactivity were detected using the relevant scrambled siRNA control sequences. Importantly, after 48 h in culture after siRNA-mediated knockdown of Rho-A, neurite outgrowth was enhanced by 30% compared to that after p75NTR and 50% after NgR silencing. By 3 days, a 5-, 3.5- and 6.5-fold increase in betaIII-tubulin protein levels were observed compared to controls without siRNA after knockdown of p75NTR, NgR and Rho-A, respectively. Together, these results suggest that Rho-A knockdown might be the most effective target for a disinhibition strategy to promote CNS axon regeneration in vivo.


Assuntos
Gânglios Espinais/metabolismo , Fatores de Crescimento Neural/fisiologia , Regeneração Nervosa/fisiologia , Neuritos/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Peptídeos/genética , Proteína rhoA de Ligação ao GTP/genética , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/fisiologia , Proteínas Ligadas por GPI , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/ultraestrutura , Proteínas da Mielina/metabolismo , Proteínas da Mielina/farmacologia , Fatores de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Receptor Nogo 1 , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Fator de Crescimento Neural , Receptores de Superfície Celular , Receptores de Fator de Crescimento Neural/metabolismo , Receptores de Peptídeos/metabolismo , Tubulina (Proteína)/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Glia ; 46(3): 225-51, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15048847

RESUMO

Axon regeneration is arrested in the injured central nervous system (CNS) by axon growth-inhibitory ligands expressed in oligodendrocytes/myelin, NG2-glia, and reactive astrocytes in the lesion and degenerating tracts, and by fibroblasts in scar tissue. Growth cone receptors (Rc) bind inhibitory ligands, activating a Rho-family GTPase intracellular signaling pathway that disrupts the actin cytoskeleton inducing growth cone collapse/repulsion. The known inhibitory ligands include the chondroitin sulfate proteoglycans (CSPG) Neurocan, Brevican, Phosphacan, Tenascin, and NG2, as either membrane-bound or secreted molecules; Ephrins expressed on astrocyte/fibroblast membranes; the myelin/oligodendrocyte-derived growth inhibitors Nogo, MAG, and OMgp; and membrane-bound semaphorins (Sema) produced by meningeal fibroblasts invading the scar. No definitive CSPG Rc have been identified, although intracellular signaling through the Rho family of G-proteins is probably common to all the inhibitory ligands. Ephrins bind to signalling Ephs. The ligand-binding Rc for all the myelin inhibitors is NgR and requires p75(NTR) for transmembrane signaling. The neuropilin (NP)/plexin (Plex) Rc complex binds Sema. Strategies for promoting axon growth after CNS injury are thwarted by the plethora of inhibitory ligands and the ligand promiscuity of some of their Rc. There is also paradoxical reciprocal expression of many of the inhibitory ligands/Rc in normal and damaged neurons, and NgR expression is restricted to a limited number of neuronal populations. All these factors, together with an incomplete understanding of the normal functions of many of these molecules in the intact CNS, presently confound interpretive acumen in regenerative studies.


Assuntos
Axônios/fisiologia , Cicatriz/metabolismo , Inibidores do Crescimento/biossíntese , Bainha de Mielina/fisiologia , Regeneração Nervosa/fisiologia , Neuroglia/fisiologia , Animais , Cicatriz/patologia , Cicatriz/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Inibidores do Crescimento/metabolismo , Inibidores do Crescimento/fisiologia , Humanos , Receptores de Fator de Crescimento Neural/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA