Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832692

RESUMO

Cold heavy oil production with sand (CHOPS) is an extraction process for heavy oil in Canada, with the potential to lead to higher CH4 venting than conventional oil sites, that have not been adequately characterized. In order to quantify CH4 emissions from CHOPS activities, a focused aerial measurement campaign was conducted in the Canadian provinces of Alberta and Saskatchewan in June 2018. Total CH4 emissions from each of 10 clusters of CHOPS wells (containing 22-167 well sites per cluster) were derived using a mass balance computation algorithm that uses in situ wind data measurement on board aircraft. Results show that there is no statistically significant difference in CH4 emissions from CHOPS wells between the two provinces. Cluster-aggregated emission factors (EF) were determined using correspondingly aggregated production volumes. The average CH4 EF was 70.4 ± 36.9 kg/m3 produced oil for the Alberta wells and 55.1 ± 13.7 kg/m3 produced oil for the Saskatchewan wells. Using these EF and heavy oil production volumes reported to provincial regulators, the annual CH4 emissions from CHOPS were estimated to be 121% larger than CHOPS emissions extracted from Canada's National Inventory Report (NIR) for Saskatchewan. The EF were found to be positively correlated with the percentage of nonpiped production volumes in each cluster, indicating higher emissions for nonpiped wells while suggesting an avenue for methane emission reductions. A comparison with recent measurements indicates relatively limited effectiveness of regulations for Saskatchewan compared to those in Alberta. The results of this study indicate the substantial contribution of CHOPS operations to the underreporting observed in the NIR and provide measurement-based EF that can be used to develop improved emissions inventories for this sector and mitigate CH4 emissions from CHOPS operations.

2.
ACS Biomater Sci Eng ; 4(11): 3713-3725, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33429602

RESUMO

Injectable, dual-responsive, and degradable poly(oligo ethylene glycol methacrylate) (POEGMA) hydrogels are demonstrated to offer potential for cell delivery. Charged groups were incorporated into hydrazide and aldehyde-functionalized thermoresponsive POEGMA gel precursor polymers via the copolymerization of N,N'-dimethylaminoethyl methacrylate (DMAEMA) or acrylic acid (AA) to create dual-temperature/pH-responsive in situ gelling hydrogels that can be injected via narrow gauge needles. The incorporation of charge significantly broadens the swelling, degradation, and rheological profiles achievable with injectable POEGMA hydrogels without significantly increasing nonspecific protein adsorption or chronic inflammatory responses following in vivo subcutaneous injection. However, significantly different cell responses are observed upon charge incorporation, with charged gels significantly improving 3T3 mouse fibroblast cell adhesion in 2D and successfully delivering viable and proliferating ARPE-19 human retinal epithelial cells via an "all-synthetic" matrix that does not require the incorporation of cell-adhesive peptides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA