Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 285(1884)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068675

RESUMO

An understanding of the balance of interspecific competition and the physical environment in structuring organismal communities is crucial because those communities structured primarily by their physical environment typically exhibit greater sensitivity to environmental change than those structured predominantly by competitive interactions. Here, using detailed phylogenetic and functional information, we investigate this question in macrofaunal assemblages from Northwest Atlantic Ocean continental slopes, a high seas region projected to experience substantial environmental change through the current century. We demonstrate assemblages to be both phylogenetically and functionally under-dispersed, and thus conclude that the physical environment, not competition, may dominate in structuring deep-ocean communities. Further, we find temperature and bottom trawling intensity to be among the environmental factors significantly related to assemblage diversity. These results hint that deep-ocean communities are highly sensitive to their physical environment and vulnerable to environmental perturbation, including by direct disturbance through fishing, and indirectly through the changes brought about by climate change.


Assuntos
Organismos Aquáticos , Ecossistema , Pesqueiros , Animais , Oceano Atlântico , Mudança Climática , Filogenia , Temperatura
2.
Ecol Evol ; 9(24): 14167-14204, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31938511

RESUMO

The deep-sea benthos covers over 90% of seafloor area and hosts a great diversity of species which contribute toward essential ecosystem services. Evidence suggests that deep-seafloor assemblages are structured predominantly by their physical environment, yet knowledge of assemblage/environment relationships is limited. Here, we utilized a very large dataset of Northwest Atlantic Ocean continental slope peracarid crustacean assemblages as a case study to investigate the environmental drivers of deep-seafloor macrofaunal biodiversity. We investigated biodiversity from a phylogenetic, functional, and taxonomic perspective, and found that a wide variety of environmental drivers, including food availability, physical disturbance (bottom trawling), current speed, sediment characteristics, topographic heterogeneity, and temperature (in order of relative importance), significantly influenced peracarid biodiversity. We also found deep-water peracarid assemblages to vary seasonally and interannually. Contrary to prevailing theory on the drivers of deep-seafloor diversity, we found high topographic heterogeneity (at the hundreds to thousands of meter scale) to negatively influence assemblage diversity, while broadscale sediment characteristics (i.e., percent sand content) were found to influence assemblages more than sediment particle-size diversity. However, our results support other paradigms of deep-seafloor biodiversity, including that assemblages may vary inter- and intra-annually, and how assemblages respond to changes in current speed. We found that bottom trawling negatively affects the evenness and diversity of deep-sea soft-sediment peracarid assemblages, but that predicted changes in ocean temperature as a result of climate change may not strongly influence continental slope biodiversity over human timescales, although it may alter deep-sea community biomass. Finally, we emphasize the value of analyzing multiple metrics of biodiversity and call for researchers to consider an expanded definition of biodiversity in future investigations of deep-ocean life.

3.
Mar Pollut Bull ; 104(1-2): 20-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26856642

RESUMO

In the UK, most marine benthic monitoring is carried out in a piecemeal fashion, funded by different sectors of industry that utilise the marine environment under licence. Monitoring requirements are imposed by licence conditions, which can vary considerably between licences. The UK Government also conducts marine environmental surveys in support of its legislative commitments. The present investigation reviews these different monitoring approaches to highlight whether synergies between them could be developed into an integrated approach to marine benthic monitoring. An integrated approach would have ecological benefits, as greater consistency in sampling and analytical protocols would reduce uncertainty in the predictions of impact, and facilitate the assessment of Good Environmental Status under the Marine Strategy Framework Directive. The same approach would also be of financial benefit, as spatio-temporal duplication in sampling would be reduced, and the value of acquired data would be maximised, resulting in a more efficient and cost-effective approach.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Água do Mar/química , Biodiversidade , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA