Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102214, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35779633

RESUMO

Mitochondrial translation is a highly regulated process, and newly synthesized mitochondrial products must first associate with several nuclear-encoded auxiliary factors to form oxidative phosphorylation complexes. The output of mitochondrial products should therefore be in stoichiometric equilibrium with the nuclear-encoded products to prevent unnecessary energy expense or the accumulation of pro-oxidant assembly modules. In the mitochondrial DNA of Saccharomyces cerevisiae, COX1 encodes subunit 1 of the cytochrome c oxidase and COB the central core of the cytochrome bc1 electron transfer complex; however, factors regulating the expression of these mitochondrial products are not completely described. Here, we identified Mrx9p as a new factor that controls COX1 and COB expression. We isolated MRX9 in a screen for mitochondrial factors that cause poor accumulation of newly synthesized Cox1p and compromised transition to the respiratory metabolism. Northern analyses indicated lower levels of COX1 and COB mature mRNAs accompanied by an accumulation of unprocessed transcripts in the presence of excess Mrx9p. In a strain devoid of mitochondrial introns, MRX9 overexpression did not affect COX1 and COB translation or respiratory adaptation, implying Mrx9p regulates processing of COX1 and COB RNAs. In addition, we found Mrx9p was localized in the mitochondrial inner membrane, facing the matrix, as a portion of it cosedimented with mitoribosome subunits and its removal or overexpression altered Mss51p sedimentation. Finally, we showed accumulation of newly synthesized Cox1p in the absence of Mrx9p was diminished in cox14 null mutants. Taken together, these data indicate a regulatory role of Mrx9p in COX1 RNA processing.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
IUBMB Life ; 75(12): 972-982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470229

RESUMO

The insertion of genes into mitochondria by biolistic transformation is currently only possible in the yeast Saccharomyces cerevisiae and the algae Chlamydomonas reinhardtii. The fact that S. cerevisiae mitochondria can exist with partial (ρ- mutants) or complete deletions (ρ0 mutants) of mitochondrial DNA (mtDNA), without requiring a specific origin of replication, enables the propagation of exogenous sequences. Additionally, mtDNA in this organism undergoes efficient homologous recombination, making it well-suited for genetic manipulation. In this review, we present a summarized historical overview of the development of biolistic transformation and discuss iconic applications of the technique. We also provide a detailed example on how to obtain transformants with recombined foreign DNA in their mitochondrial genome.


Assuntos
DNA Mitocondrial , Saccharomyces cerevisiae , DNA Mitocondrial/genética , Saccharomyces cerevisiae/genética , Biolística/métodos , Transformação Genética , Mitocôndrias/genética
3.
J Environ Manage ; 326(Pt A): 116720, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356542

RESUMO

The dissolved oxygen (DO) level in the hypolimnion of lakes and reservoirs can reach anoxic conditions, which favor the release of phosphorus from the sediment bed to the water column. However, to estimate nutrient release from sediment is extremely important to quantify the duration of anoxia. In low latitude regions, the water-sediment layer is warmer than in temperate regions and eutrophication is usually more severe, potentially accelerating oxygen depletion and extending the anoxia period. Considering that the available equations to quantify the duration of anoxia were developed for temperate lakes, there is a need to effectively quantify this period in lakes and reservoirs located in other climate regions, such as the semiarid. In this study, the dynamics of thermal stratification was analyzed as a function of the Relative Water Column Stability coefficient (RWCS) and then correlated with DO dynamics for nineteen tropical semiarid reservoirs. RWCS values were higher during the rainy season, when anoxia duration was longer and the hypolimnion was thicker with respect to total water depth. Then, two new equations for quantification of anoxia duration, based on the equation originally developed for temperate climate, were adapted for the wet and dry seasons of the tropical semiarid region. The results showed that the proposed equations presented a better performance compared to the original one, which tends to underestimate anoxia in tropical semiarid reservoirs. This work intended to provide simple and locally adjusted tools to better quantify anoxic events and support the water quality and internal phosphorus load modeling for tropical semiarid reservoirs.


Assuntos
Eutrofização , Lagos , Humanos , Fósforo/análise , Hipóxia , Oxigênio , Monitoramento Ambiental/métodos
4.
Environ Monit Assess ; 195(12): 1550, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030894

RESUMO

Reservoir cascade systems have attracted the attention of scientists worldwide. The present study investigates the cascade of five reservoirs (R1, R2, R3, R4, and R5) along a 192-km water channel system located in the state of Ceará, in the Brazilian semiarid region. This cascade system was implemented in 2012 to promote water availability and security to the capital of Ceará and the strategic industry and port complex of the region. However, these reservoirs have faced a progressive degradation of water quality, which has resulted in intense eutrophication and high-water treatment costs. The study evaluates the dynamics of water quality from 2013 to 2021 along this reservoir cascade (from R1 to R5). The results revealed that water quality did not improve along the cascade system, differently from previous studies on reservoirs interconnected by natural rivers. This was attributed to the low water residence time and low capacity of pollutant removal along the man-made water channel system, as well as to the high internal phosphorus loads of the reservoirs. Multiple regression models involving the explanatory variables of total phosphorus, total nitrogen, chlorophyll-a, cyanobacteria, transparency, rainfall, and volume from upstream reservoirs were obtained to determine total phosphorus concentration in downstream reservoirs, considering different combinations of reservoir pairs in the cascade and different time delays. A clear trend of R2 decline with the distance between the upstream and downstream reservoirs was observed. For example, the R2 values for the correlations adjusted between R1 and R2 (48 km), R1 and R3 (172 km), R1 and R4 (178 km), and R1 and R5 (192 km) were 0.66, 0.32, 0.22, and 0.12, respectively. On the other hand, the adoption of time delays of the order of the cumulative residence times of the reservoirs promoted a significant improvement in the R2 values. For instance, the best correlation adjusted between R1 and R5 improved from R2 = 0.12 to 0.69 by considering a time delay of 21 months. This suggests that previous data from upstream reservoirs can be used to predict current and future total phosphorus concentration in downstream reservoirs. The results from this study are important to better understand the spatiotemporal dynamics of water quality in reservoir cascade systems and thus improve water resources management, especially in drylands.


Assuntos
Aquaporinas , Monitoramento Ambiental , China , Clorofila A , Monitoramento Ambiental/métodos , Eutrofização , Nitrogênio/análise , Fósforo/análise , Qualidade da Água
5.
Yeast ; 39(3): 208-229, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34713496

RESUMO

In Saccharomyces cerevisiae, mitoribosomes are composed of a 54S large subunit (mtLSU) and a 37S small subunit (mtSSU). The two subunits altogether contain 73 mitoribosome proteins (MRPs) and two ribosomal RNAs (rRNAs). Although mitoribosomes preserve some similarities with their bacterial counterparts, they have significantly diverged by acquiring new proteins, protein extensions, and new RNA segments, adapting the mitoribosome to the synthesis of highly hydrophobic membrane proteins. In this study, we investigated the functional relevance of mitochondria-specific protein extensions at the C-terminus (C) or N-terminus (N) present in 19 proteins of the mtLSU. The studied mitochondria-specific extensions consist of long tails and loops extending from globular domains that mainly interact with mitochondria-specific proteins and 21S rRNA moieties extensions. The expression of variants devoid of extensions in uL4 (C), uL5 (N), uL13 (N), uL13 (C), uL16 (C), bL17 (N), bL17 (C), bL21 (24), uL22 (N), uL23 (N), uL23 (C), uL24 (C), bL27 (C), bL28 (N), bL28 (C), uL29 (N), uL29 (C), uL30 (C), bL31 (C), and bL32 (C) did not rescue the mitochondrial protein synthesis capacities and respiratory growth of the respective null mutants. On the contrary, the truncated form of the mitoribosome exit tunnel protein uL24 (N) yields a partially functional mitoribosome. Also, the removal of mitochondria-specific sequences from uL1 (N), uL3 (N), uL16 (N), bL9 (N), bL19 (C), uL29 (C), and bL31 (N) did not affect the mitoribosome function and respiratory growth. The collection of mutants described here provides new means to study and evaluate defective assembly modules in the mitoribosome biogenesis process.


Assuntos
Mitocôndrias , Ribossomos Mitocondriais , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Nutr Neurosci ; 25(5): 1056-1065, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33103611

RESUMO

Fumonisins are naturally occurring mycotoxins that contaminate food for human and animal consumption. They have neurotoxic effects, but the mechanisms by which these toxins affect the nervous system are not fully known. In the present study, male Wistar rats were fed between 21 and 63 days of age with diets that contained fumonisins B1+B2 at 0, 1, and 4 mg/kg. The following variables were assessed: food consumption, growth, body weight gain, and blood parameters. Morphoquantitave analyses of the most metabolically active myenteric neurons were performed, detected by NADH-diaphorase activity. Nitrergic neurons were detected by NADPH-diaphorase activity. The fumonisin-containing diets did not significantly alter food consumption or the body or plasma parameters. These diets decreased the metabolic activity of jejunal myenteric neurons, reducing neuronal density of the most metabolic active neurons by 30.8% and the cell body area by 4.3%. The diets also decreased the cell body area of nitrergic neurons by 22.1%. The effects of fumonisin B1 on the respiratory metabolism of isolated mitochondria in the brain and liver were also assessed. A decrease in oxygen consumption up to a 29% in the brain and 38% in the liver was observed in mitochondrial isolates to which 50 µM fumonisin B1 was added. The decrease in respiratory activity that was triggered by exposure to fumonisins was related to the lower metabolic activity of myenteric neurons, which had a negative impact on neuroplasticity of the enteric nervous system.


Assuntos
Fumonisinas , Micotoxinas , Animais , Dieta , Fumonisinas/toxicidade , Masculino , Neurônios , Ratos , Ratos Wistar
7.
Nucleic Acids Res ; 48(12): 6759-6774, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32449921

RESUMO

Mitoribosome biogenesis is an expensive metabolic process that is essential to maintain cellular respiratory capacity and requires the stoichiometric accumulation of rRNAs and proteins encoded in two distinct genomes. In yeast, the ribosomal protein Var1, alias uS3m, is mitochondrion-encoded. uS3m is a protein universally present in all ribosomes, where it forms part of the small subunit (SSU) mRNA entry channel and plays a pivotal role in ribosome loading onto the mRNA. However, despite its critical functional role, very little is known concerning VAR1 gene expression. Here, we demonstrate that the protein Sov1 is an in bona fide VAR1 mRNA translational activator and additionally interacts with newly synthesized Var1 polypeptide. Moreover, we show that Sov1 assists the late steps of mtSSU biogenesis involving the incorporation of Var1, an event necessary for uS14 and mS46 assembly. Notably, we have uncovered a translational regulatory mechanism by which Sov1 fine-tunes Var1 synthesis with its assembly into the mitoribosome.


Assuntos
Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/metabolismo , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , DNA Mitocondrial/genética , Regulação Fúngica da Expressão Gênica/genética , RNA Mensageiro/genética
8.
J Biol Chem ; 295(18): 6023-6042, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32205446

RESUMO

Coenzyme Q (Q n ) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1-coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6 The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because "fused" proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.


Assuntos
Deleção de Genes , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Ubiquinona/análogos & derivados , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Mitocôndrias/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Ubiquinona/biossíntese , Ubiquinona/deficiência , Ubiquinona/genética , Ubiquinona/metabolismo
9.
FEMS Yeast Res ; 21(7)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34755843

RESUMO

Coenzyme Q (CoQ) is an essential molecule that consists of a highly substituted benzene ring attached to a polyprenyl tail anchored in the inner mitochondrial membrane. CoQ transfers electrons from NADH dehydrogenase and succinate dehydrogenase complexes toward ubiquinol-cytochrome c reductase, and that allows aerobic growth of cells. In Saccharomyces cerevisiae, the synthesis of CoQ depends on fourteen proteins Coq1p-Co11p, Yah1p, Arh1p, and Hfd1p. Some of these proteins are components of CoQ synthome. Using ab initio molecular modeling and site-directed mutagenesis, we identified the functional residues of the O-methyltransferase Coq3p, which depends on S-adenosylmethionine for catalysis and is necessary for two O-methylation steps required for CoQ maturation. Conserved residues as well as those that coevolved in the protein structure were found to have important roles in respiratory growth, CoQ biosynthesis, and also in the stability of CoQ synthome proteins. Finally, a multiple sequence alignment showed that S. cerevisiae Coq3p has a 45 amino acid residues insertion that is poorly conserved or absent in oleaginous yeast, cells that can store up to 20% of their dry weight as lipids. These results point to the Coq3p structural determinants of its biological and catalytic function and could contribute to the development of lipid-producing yeast for biotechnology.


Assuntos
Metiltransferases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Membranas Mitocondriais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
PLoS Pathog ; 14(4): e1007039, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29709016

RESUMO

The oncogenic Epstein Barr virus (EBV) infects the majority of the human population and usually persists within its host for life without symptoms. The EBV oncoproteins nuclear antigen 3A (EBNA3A) and 3C (EBNA3C) are required for B cell transformation in vitro and are expressed in EBV associated immunoblastic lymphomas in vivo. In order to address the necessity of EBNA3A and EBNA3C for persistent EBV infection in vivo, we infected NOD-scid γcnull mice with reconstituted human immune system components (huNSG mice) with recombinant EBV mutants devoid of EBNA3A or EBNA3C expression. These EBV mutants established latent infection in secondary lymphoid organs of infected huNSG mice for at least 3 months, but did not cause tumor formation. Low level viral persistence in the absence of EBNA3A or EBNA3C seemed to be supported primarily by proliferation with the expression of early latent EBV gene products transitioning into absent viral protein expression without elevated lytic replication. In vitro, EBNA3A and EBNA3C deficient EBV infected B cells could be rescued from apoptosis through CD40 stimulation, mimicking T cell help in secondary lymphoid tissues. Thus, even in the absence of the oncogenes EBNA3A and 3C, EBV can access a latent gene expression pattern that is reminiscent of EBV persistence in healthy virus carriers without prior expression of its whole growth transforming program.


Assuntos
Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/patogenicidade , Animais , Linfócitos B/metabolismo , Células Cultivadas , Infecções por Vírus Epstein-Barr/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos
11.
Biogerontology ; 21(5): 559-575, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32189112

RESUMO

Human HSP27 is a small heat shock protein that modulates the ability of cells to respond to heat shock and oxidative stress, and also functions as a chaperone independent of ATP, participating in the proteasomal degradation of proteins. The expression of HSP27 is associated with survival in mammalian cells. In cancer cells, it confers resistance to chemotherapy; in neurons, HSP27 has a positive effect on neuronal viability in models of Alzheimer's and Parkinson's diseases. To better understand the mechanism by which HSP27 expression contributes to cell survival, we expressed human HSP27 in the budding yeast Saccharomyces cerevisiae under control of different mutant TEF promoters, that conferred nine levels of graded basal expression, and showed that replicative lifespan and proteasomal activity increase as well as the resistance to oxidative and thermal stresses. The profile of these phenotypes display a dose-response effect characteristic of hormesis, an adaptive phenomenon that is observed when cells are exposed to increasing amounts of stress or toxic substances. The hormetic response correlates with changes in expression levels of HSP27 and also with its oligomeric states when correlated to survival assays. Our results indicate that fine tuning of HSP27 concentration could be used as a strategy for cancer therapy, and also for improving neuronal survival in neurodegenerative diseases.


Assuntos
Proteínas de Choque Térmico HSP27 , Hormese , Saccharomyces cerevisiae , Animais , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Resposta ao Choque Térmico , Humanos , Chaperonas Moleculares , Estresse Oxidativo , Saccharomyces cerevisiae/metabolismo
12.
Arch Biochem Biophys ; 666: 63-72, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30940569

RESUMO

In addition to autophagy, proteasomes are critical for regulating intracellular protein levels and removing misfolded proteins. The 20S proteasome (20SPT), the central catalytic unit, is sometimes flanked by regulatory units at one or both ends. Additionally, proteosomal activation has been associated with increased lifespan in many organisms. Our group previously reported that the gating (open/closed) of the free 20S proteasome is redox controlled, and that S-glutathionylation of two Cys residues (Cys76 and Cys221) in the α5 subunit promotes gate opening. The present study constructed site-directed mutants of these Cys residues, and evaluated the effects these mutations have on proteosome gate opening and yeast cell survival. Notably, the double mutation of both Cys residues (Cys76 and Cys221) rendered the cells nonviable, whereas the lifespan of the yeast carrying the single mutations (α5-C76S or α5-C221S) was attenuated when compared to the wild type counterpart. Furthermore, it was found that α5-C76S or α5-C221S 20SPT were more likely to be found with the gate in a closed conformation. In contrast, a random α5-subunit double mutation (S35P/C221S) promoted gate opening, increased chronological lifespan and provided resistance to oxidative stress. The 20SPT core particle purified from the long-lived strain degraded model proteins (e.g., α-synuclein) more efficiently than preparations obtained from the wild-type counterpart, and also displayed an increased chymotrypsin-like activity. Mass spectrometric analyses of the C76S, C221S, S35P/C221S, S35P and S35P/C76S mutants provided evidence that the highly conserved Cys76 residue of the α5-subunit is the key determinant for gate opening and cellular survival. The present study reveals a sophisticated regulatory mechanism that controls gate opening, which appears to be based on the interactions among multiple residues within the α5-subunit, and consequently impacts the lifespan of yeast.


Assuntos
Cisteína/genética , Longevidade , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Serina/genética , Glutationa/metabolismo , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
13.
J Biol Chem ; 292(41): 17011-17024, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28821623

RESUMO

Yeast Prx1 is a mitochondrial 1-Cys peroxiredoxin that catalyzes the reduction of endogenously generated H2O2 Prx1 is synthesized on cytosolic ribosomes as a preprotein with a cleavable N-terminal presequence that is the mitochondrial targeting signal, but the mechanisms underlying Prx1 distribution to distinct mitochondrial subcompartments are unknown. Here, we provide direct evidence of the following dual mitochondrial localization of Prx1: a soluble form in the intermembrane space and a form in the matrix weakly associated with the inner mitochondrial membrane. We show that Prx1 sorting into the intermembrane space likely involves the release of the protein precursor within the lipid bilayer of the inner membrane, followed by cleavage by the inner membrane peptidase. We also found that during its import into the matrix compartment, Prx1 is sequentially cleaved by mitochondrial processing peptidase and then by octapeptidyl aminopeptidase 1 (Oct1). Oct1 cleaved eight amino acid residues from the N-terminal region of Prx1 inside the matrix, without interfering with its peroxidase activity in vitro Remarkably, the processing of peroxiredoxin (Prx) proteins by Oct1 appears to be an evolutionarily conserved process because yeast Oct1 could cleave the human mitochondrial peroxiredoxin Prx3 when expressed in Saccharomyces cerevisiae Altogether, the processing of peroxiredoxins by Imp2 or Oct1 likely represents systems that control the localization of Prxs into distinct compartments and thereby contribute to various mitochondrial redox processes.


Assuntos
Metaloproteases/metabolismo , Mitocôndrias/enzimologia , Peroxidases/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Metaloproteases/genética , Mitocôndrias/genética , Peroxidases/genética , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1896-1903, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29526819

RESUMO

AMP-activated protein kinase (AMPK) regulates many different metabolic pathways in eukaryote cells including mitochondria biogenesis and energy homeostasis. Here we identify a patient with hypotonia, weakness, delayed milestones and neurological impairment since birth harbouring a novel homozygous mutation in the AMPK catalytic α-subunit 1, encoded by the PRKAA1 gene. The homozygous mutation p.S487L in isoform 1 present in the patient is in a cryptic residue for AMPK activity. In the present study, we performed the characterization of mitochondrial respiratory properties of the patient, in comparison to healthy controls, through the culture of skin fibroblasts in order to understand some of the cellular consequences of the PRKAA1 mutation. In these assays, mitochondrial respiratory complex I showed lower activity, which was followed by a decrement in the mtDNA copy number, which is a probable consequence of the lower expression of PGC-1α and PRKAA1 itself as measured in our quantitative PCRs experiments. Confirming the effect of the patient mutation in respiration, transfection of patient fibroblasts with wild type PRKAA1 partially restore complex I level. The preliminary clinic evaluations of the patient suggested a metabolic defect related to the mitochondrial respiratory function, therefore treatment with CoQ10 supplementation dose started four years ago and a clear improvement in motor skills and strength has been achieved with this treatment.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibroblastos , Homozigoto , Mitocôndrias , Mutação de Sentido Incorreto , Consumo de Oxigênio , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Substituição de Aminoácidos , Pré-Escolar , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
15.
Yeast ; 35(3): 281-290, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29143358

RESUMO

One of the hallmarks of Parkinson disease is α-synuclein aggregate deposition that leads to endoplasmic reticulum stress, Golgi fragmentation and impaired energy metabolism with consequent redox imbalance. In the last decade, many studies have used Saccharomyces cerevisiae as a model in order to explore the intracellular consequences of α-synuclein overexpression. In this study we propose to evaluate the respiratory outcome of yeast cells expressing α-synuclein. Cell viability or growth on selective media for respiratory activity was mainly affected in the α-synuclein-expressing cells if they were also treated with menadione, which stimulates reactive oxygen species production. We also tested whether melatonin, a natural antioxidant, would counteract the deleterious effects of α-synuclein and menadione. In fact, melatonin addition improved the respiratory growth of α-synuclein/menadione-challenged cells, presented a general improvement in the enzymatic activity of the respiratory complexes and finally elevated the rate of mitophagy, an important cellular process necessary for the clearance of damaged mitochondria. Altogether, our data confirms that α-synuclein impairs respiration in yeast, which can be rescued by melatonin addition.


Assuntos
Melatonina/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Vitamina K 3/farmacologia , alfa-Sinucleína/farmacologia , Sobrevivência Celular , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Consumo de Oxigênio/fisiologia
16.
Hematol Oncol ; 36(4): 663-670, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29901224

RESUMO

The search for clinically relevant molecular markers in classical Hodgkin lymphoma (cHL) is hampered by the histopathological complexity of the disease, resulting from the admixture of a small number of neoplastic Hodgkin and Reed-Sternberg (H-RS) cells with an abundant and heterogeneous microenvironment. In this study, we evaluated gene expression profiles of 11 selected genes previously proposed as a molecular score for adult cHL, aiming to validate its application in the pediatric setting. Assays were performed by RT-qPCR from formalin-fixed paraffin-embedded (FFPE) lymph nodes in 80 patients with cHL. Selected genes were associated with cell cycle (CENPF, CDK1, CCNA2, CCNE2, and HMMR), apoptosis (BCL2, BCL2L1, and CASP3), and monocytes/macrophages (LYZ and STAT1). Despite using controlled preanalytical and analytical strategies, we were not able to validate the 11-gene score to be applied in pediatric cHL. Principal component analysis (PCA) disclosed 3 components that accounted for 65.7% of the total variability. The second PC included microenvironment and apoptosis genes, from which CASP3 expression was associated with a short time of progression-free survival, which impact was maintained in the unfavorable risk group, Epstein-Barr virus-negative cases, and multivariate analysis (P < .05). Because this is a counterintuitive association, CASP3 active expression was assessed at the protein level in H-RS cells by double immunohistochemistry. In contrast to the association of mRNA levels with a poor therapeutic response, a high number of cleaved CASP3+ cells were associated with longer progression-free survival (P = .03) and overall survival (P = .002). Our results demonstrate the feasibility of using FFPE samples as RNA source for molecular prognostication, but argue against the concept of direct and wide applicability of molecular scores in cHL. We reinforce the potential of CASP3 as an interesting target to be explored in adult and pediatric cHL, and alert for its dual biological role in H-RS cells and tumor microenvironment.


Assuntos
Caspase 3/biossíntese , Doença de Hodgkin/genética , Doença de Hodgkin/metabolismo , Adolescente , Caspase 3/genética , Criança , Pré-Escolar , Intervalo Livre de Doença , Doença de Hodgkin/enzimologia , Doença de Hodgkin/patologia , Humanos , Imuno-Histoquímica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células de Reed-Sternberg/metabolismo , Células de Reed-Sternberg/patologia , Análise Serial de Tecidos , Transcriptoma
17.
Cell Biol Int ; 42(6): 630-642, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29160602

RESUMO

Saccharomyces cerevisiae mitoribosomes are specialized in the translation of a few number of highly hydrophobic membrane proteins, components of the oxidative phosphorylation system. Mitochondrial characteristics, such as the membrane system and its redox state driven mitoribosomes evolution through great diversion from their bacterial and cytosolic counterparts. Therefore, mitoribosome presents a considerable number of mitochondrial-specific proteins, as well as new protein extensions. In this work we characterize temperature sensitive mutants of the subunit bL34 present in the 54S large subunit. Although bL34 has bacterial homologs, in yeast it has a long 65 aminoacids mitochondrial N-terminal addressing sequence, here we demonstrate that it can be replaced by the mitochondrial addressing sequence of Neurospora crassa ATP9 gene. The bL34 temperature sensitive mutants present lowered translation of mitochondrial COX1 and COX3, which resulted in reduced cytochrome c oxidase activity and respiratory growth deficiency. The sedimentation properties of bL34 in sucrose gradients suggest that similarly to its bacterial homolog, bL34 is also a later participant in the process of mitoribosome biogenesis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Ribossomos Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutagênese Sítio-Dirigida , Biossíntese de Proteínas , Proteínas RGS/genética , Proteínas RGS/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
18.
Environ Monit Assess ; 190(4): 247, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29574498

RESUMO

Forty-one livestock drinking water ponds in Alabama beef cattle pastures during were surveyed during the late summer to generally understand water quality patterns in these important water resources. Since livestock drinking water ponds are prone to excess nutrients that typically lead to eutrophication, which can promote blooms of toxigenic phytoplankton such as cyanobacteria, we also assessed the threat of exposure to the hepatotoxin, microcystin. Eighty percent of the ponds studied contained measurable microcystin, while three of these ponds had concentrations above human drinking water thresholds set by the US Environmental Protection Agency (i.e., 0.3 µg/L). Water quality patterns in the livestock drinking water ponds contrasted sharply with patterns typically observed for temperate freshwater lakes and reservoirs. Namely, we found several non-linear relationships between phytoplankton abundance (measured as chlorophyll) and nutrients or total suspended solids. Livestock had direct access to all the study ponds. Consequently, the proportion of inorganic suspended solids (e.g., sediment) increased with higher concentrations of total suspended solids, which underlies these patterns. Unimodal relationships were also observed between microcystin and phytoplankton abundance or nutrients. Euglenoids were abundant in the four ponds with chlorophyll concentrations > 250 µg/L (and dominated three of these ponds), which could explain why ponds with high chlorophyll concentrations would have low microcystin concentrations. Based on observations made during sampling events and available water quality data, livestock-mediated bioturbation is causing elevated total suspended solids that lead to reduced phytoplankton abundance and microcystin despite high concentrations of nutrients, such as phosphorus and nitrogen. Thus, livestock could be used to manage algal blooms, including toxic secondary metabolites, in their drinking water ponds by allowing them to walk in the ponds to increase turbidity.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental , Lagoas/microbiologia , Poluição da Água/prevenção & controle , Criação de Animais Domésticos , Animais , Bovinos , Clorofila/análise , Cianobactérias/metabolismo , Água Potável/microbiologia , Eutrofização , Água Doce/microbiologia , Humanos , Microcistinas , Nitrogênio/análise , Fósforo/análise , Fitoplâncton/metabolismo , Estações do Ano , Poluição da Água/estatística & dados numéricos , Qualidade da Água
19.
Ann Plast Surg ; 79(5): 426-429, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28604545

RESUMO

INTRODUCTION: Lipodystrophy syndrome associated with highly active antiretroviral therapy (HAART) may lead to low self-esteem and poor compliance with the drug treatment on patients infected with human immunodeficiency virus (HIV), which is a matter of concern for the health system. The aim of this study was to evaluate patients with HIV submitted to gluteal augmentation with intramuscular silicone implants to correct gluteal lipoatrophy related to the use of HAART. METHODS: This is a retrospective evaluation of 10 patients submitted to gluteal augmentation with intramuscular silicone implant for correction of gluteal lipoatrophy related to the use of HAART, operated between 2012 and 2015. Postoperative complications and the degree of patient's satisfaction were analyzed. RESULTS: There were 3 postoperative complications including 1 case of surgical wound dehiscence and 2 cases of seroma. Six months after surgery, 8 patients had an excellent degree of satisfaction, and 2 patients had a good degree of satisfaction related to the procedure. Although this intervention does not offer functional advantages, it improves the body contour, increases patients' self-esteem, and helps them to accept their body image. These advantages can lead to higher compliance with prolonged HAART. CONCLUSIONS: Gluteal augmentation with intramuscular silicone implant can be a viable option to treat patients with HIV with gluteal lipoatrophy related to the use of HAART. The patients were satisfied with the outcomes of the procedure, and there were only minor self-limited postoperative complications.


Assuntos
Terapia Antirretroviral de Alta Atividade/efeitos adversos , Nádegas/cirurgia , Síndrome de Lipodistrofia Associada ao HIV/cirurgia , Próteses e Implantes , Géis de Silicone , Adulto , Estética , Feminino , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Síndrome de Lipodistrofia Associada ao HIV/etiologia , Síndrome de Lipodistrofia Associada ao HIV/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , Implantação de Prótese/métodos , Estudos Retrospectivos , Estudos de Amostragem , Cirurgia Plástica/métodos , Resultado do Tratamento
20.
Curr Genet ; 62(3): 607-17, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26780366

RESUMO

Recently, a large body of evidences indicates the existence in the mitochondrial matrix of foci that contain different proteins involved in mitochondrial RNA metabolism. Some of these proteins have a pentatricopeptide repeat motif that constitutes their RNA-binding structures. Here we report that MSC6, a mitochondrial pentatricopeptide protein of unknown function, is a multi copy suppressor of mutations in QRS1/HER2 a component of the trimeric complex that catalyzes the transamidation of glutamyl-tRNAQ to glutaminyl-tRNAQ. This is an essential step in mitochondrial translation because of the lack of a specific mitochondrial aminoacyl glutaminyl-tRNA synthetase. MSC6 over-expression did not abolish translation of an aberrant variant form of Cox2p detected in QRS1/HER2 mutants, arguing against a suppression mechanism that bypasses Qrs1p function. A slight decrement of the mitochondrial translation capacity as well as diminished growth on respiratory carbon sources media for respiratory activity was observed in the msc6 null mutant. Additionally, the msc6 null mutant did not display any impairment in RNA transcription, processing or turnover. We concluded that Msc6p is a mitochondrial matrix protein and further studies are required to indicate the specific function of Msc6p in mitochondrial translation.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons , Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Alelos , Aminoacil-tRNA Sintetases/química , Regulação Fúngica da Expressão Gênica , Genótipo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA