Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nano Lett ; 10(12): 4920-8, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21090693

RESUMO

Nanoparticle-based therapeutics with local delivery and external electromagnetic field modulation holds extraordinary promise for soft-tissue cancers such as breast cancer; however, knowledge of the distribution and fate of nanoparticles in vivo is crucial for clinical translation. Here we demonstrate that multiple diagnostic capabilities can be introduced in photothermal therapeutic nanocomplexes by simultaneously enhancing both near-infrared fluorescence and magnetic resonance imaging (MRI). We track nanocomplexes in vivo, examining the influence of HER2 antibody targeting on nanocomplex distribution over 72 h. This approach provides valuable, detailed information regarding the distribution and fate of complex nanoparticles designed for specific diagnostic and therapeutic functions.


Assuntos
Neoplasias da Mama/terapia , Nanopartículas , Animais , Linhagem Celular Tumoral , Campos Eletromagnéticos , Feminino , Fluorescência , Humanos , Imageamento por Ressonância Magnética , Camundongos , Espectroscopia de Luz Próxima ao Infravermelho
2.
Bioorg Med Chem ; 16(16): 7715-27, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18674917

RESUMO

Thirty-five novel substituted imidazolyl methylene biphenyls have been synthesized as CYP17 inhibitors for the potential treatment of prostate cancer. Their activities have been tested with recombinant human CYP17 expressed in Escherichia coli. Promising compounds were tested for selectivity against CYP11B1, CYP11B2, and hepatic CYP enzymes 3A4, 1A2, 2B6 and 2D6. The core rigidified compounds (30-35) were the most active ones, being much more potent than Ketoconazole and reaching the activity of Abiraterone. However, they were not very selective. Another rather potent and more selective inhibitor (compound 23, IC(50)=345 nM) was further examined in rats regarding plasma testosterone levels and pharmacokinetic properties. Compared to the reference Abiraterone, 23 was more active in vivo, showed a longer plasma half-life (10h) and a higher bioavailability. Using our CYP17 homology protein model, docking studies with selected compounds were performed to study possible interactions between inhibitors and amino acid residues of the active site.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Animais , Sítios de Ligação , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/farmacocinética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Humanos , Imidazóis/síntese química , Imidazóis/farmacocinética , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Masculino , Modelos Moleculares , Estrutura Secundária de Proteína , Ratos , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Testosterona/sangue
3.
Bioorg Med Chem ; 16(4): 1992-2010, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18061460

RESUMO

Novel chemical entities were prepared via Suzuki and S(N) reaction as AC-ring substrate mimetics of CYP17. The synthesised compounds 1-31 were tested for activity using human CYP17 expressed in Escherichia coli. Promising compounds were tested for selectivity against hepatic CYP enzymes (3A4, 2D6, 1A2, 2C9, 2C19, 2B6). Two potent inhibitors (27, IC50 = 373 nM/28, IC50 = 953 nM) were further examined in rats regarding their effects on plasma testosterone levels and their pharmacokinetic properties. Compound 28 was similarly active as abiraterone and showed better pharmacokinetic properties (higher bioavailability, t(1/2) 9.5 h vs 1.6 h). Docking studies revealed two new binding modes different from the one of the substrates and steroidal inhibitors.


Assuntos
Compostos Heterocíclicos/farmacocinética , Imidazóis/farmacocinética , Modelos Moleculares , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Sítios de Ligação , Disponibilidade Biológica , Inibidores Enzimáticos/síntese química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/farmacologia , Humanos , Imidazóis/síntese química , Imidazóis/farmacologia , Concentração Inibidora 50 , Fígado/enzimologia , Hidrocarbonetos Policíclicos Aromáticos/química , Testosterona/sangue
4.
Nanomedicine (Lond) ; 9(8): 1209-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24063415

RESUMO

AIM: We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase-associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. MATERIALS & METHODS: Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the near-infrared (NIR) dye indocyanine green, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. RESULTS: Anti-NGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2-weighted MRI with higher tumor contrast than can be obtained using long-circulating, but nontargeted, PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. CONCLUSION: TGNS with embedded NIR and magnetic resonance contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy.


Assuntos
Ouro/uso terapêutico , Nanoconchas/uso terapêutico , Pâncreas/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Proteínas de Fase Aguda/metabolismo , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/uso terapêutico , Ouro/química , Humanos , Hipertermia Induzida , Lipocalina-2 , Lipocalinas/metabolismo , Imageamento por Ressonância Magnética , Imãs/química , Camundongos Nus , Nanoconchas/química , Proteínas Oncogênicas/metabolismo , Imagem Óptica , Neoplasias Pancreáticas/patologia , Fototerapia
5.
Mol Cancer Ther ; 9(4): 1028-38, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20371708

RESUMO

Overexpression of the human epidermal growth factor receptor (HER) family has been implicated in ovarian cancer because of its participation in signaling pathway regulating cellular proliferation, differentiation, motility, and survival. Currently, effective diagnostic and therapeutic schemes are lacking for treating ovarian cancer, and consequently ovarian cancer has a high mortality rate. Although HER2 receptor expression does not usually affect the survival rates of ovarian cancer to the same extent as in breast cancer, it can be used as a docking site for directed nanotherapies in cases with de novo or acquired chemotherapy resistance. In this study, we have exploited a novel gold nanoshell-based complex (nanocomplex) for targeting, dual modal imaging, and photothermal therapy of HER2-overexpressing and drug-resistant ovarian cancer OVCAR3 cells in vitro. The nanocomplexes are engineered to simultaneously provide contrast as fluorescence optical imaging probe and a magnetic resonance imaging agent. Immunofluorescence staining and magnetic resonance imaging successfully show that nanocomplex-anti-HER2 conjugates specifically bind to OVCAR3 cells as opposed to the control, MDA-MB-231 cells, which have low HER2 expression. In addition, nanocomplexes targeted to OVCAR3 cells, when irradiated with near-IR laser, result in selective destruction of cancer cells through photothermal ablation. We also show that near-IR light therapy and the nanocomplexes by themselves are noncytotoxic in vitro. To the best of our knowledge, this is the first successful integration of dual modal bioimaging with photothermal cancer therapy for treatment of ovarian cancer. Based on their efficacy in vitro, these nanocomplexes are highly promising for image-guided photothermal therapy of ovarian cancer, as well as other HER2-overexpressing cancers. Mol Cancer Ther; 9(4); 1028-38. (c)2010 AACR.


Assuntos
Sondas Moleculares , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/terapia , Temperatura , Técnicas de Ablação , Morte Celular , Linhagem Celular Tumoral , Meios de Contraste , Feminino , Humanos , Imageamento por Ressonância Magnética , Microscopia de Fluorescência , Nanoconchas , Neoplasias Ovarianas/patologia , Receptor ErbB-2/metabolismo
6.
Eur J Med Chem ; 44(7): 2765-75, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19211174

RESUMO

Recently, the steroidal CYP17 inhibitor Abiraterone entered phase II clinical trial for the treatment of androgen-dependent prostate cancer. As 17alpha-hydroxylase-17,20-lyase (CYP17) catalyzes the last step in androgen biosynthesis, inhibition of this target should affect not only testicular but also adrenal androgen formation. Therefore CYP17 inhibitors should be advantageous over existing therapies, for example with GnRH analogues. However, steroidal drugs are known for side effects which are due to affinities for steroid receptors. Therefore we decided to synthesize non-steroidal compounds mimicking the natural CYP17 substrates pregnenolone and progesterone. The synthesis and biological evaluation of a series of 15 novel and highly active non-steroidal CYP17 inhibitors are reported. The compounds were prepared via Suzuki-cross-coupling, Grignard reaction and CDI-assisted S(N)t-reaction with imidazole and their inhibitory activity was examined with recombinant human CYP17 expressed in Escherichia coli. Promising compounds were further tested for their selectivity against the hepatic enzyme CYP3A4 and the glucocorticoid-forming enzyme CYP11B1. All compounds turned out to be potent CYP17 inhibitors. The most active compounds 7 and 8 were much more active than Ketoconazole showing activity comparable to Abiraterone (IC(50) values of 90 and 52nM vs. 72nM). Most compounds also showed higher selectivities than Ketoconazole, but turned out to be less selective than Abiraterone. Docking studies using our CYP17 protein model were performed with selected compounds to study the interactions between the inhibitors and the amino acid residues of the active site.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Compostos de Bifenilo/síntese química , Domínio Catalítico , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A , Inibidores Enzimáticos/síntese química , Humanos , Esteroide 11-beta-Hidroxilase/antagonistas & inibidores , Esteroide 17-alfa-Hidroxilase/química , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA