Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 19(36): 6896-6902, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37606644

RESUMO

The motion of self-propelling microswimmers is significantly affected by confinement, which can enhance or reduce their mobility and also steer the direction of their propulsion. While their interactions with solid boundaries have already received considerable attention, many aspects of the influence of liquid-liquid interfaces (LLI) on active particle propulsion still remain unexplored. In this work, we studied the adsorption and motion of bimetallic Janus sideways propelled rods dispersed at the interface between an aqueous solution of hydrogen peroxide and oil. The wetting properties of the bimetallic rods result in a wide distribution of their velocities at the LLI. While a fraction of rods remain immotile, we note a significant enhancement of motility for the rest of the particles with velocities of up to 8 times higher in comparison to those observed near a solid wall. Liquid-liquid interfaces, therefore, can provide a new way to regulate the propulsion of bimetallic particles.

2.
Small ; 18(18): e2200205, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35355419

RESUMO

Optical interrogation of cellular electrical activity has proven itself essential for understanding cellular function and communication in complex networks. Voltage-sensitive dyes are important tools for assessing excitability but these highly lipophilic sensors may affect cellular function. Label-free techniques offer a major advantage as they eliminate the need for these external probes. In this work, it is shown that endogenous second-harmonic generation (SHG) from live cells is highly sensitive to changes in transmembrane potential (TMP). Simultaneous electrophysiological control of a living human embryonic kidney (HEK293T) cell, through a whole-cell voltage-clamp reveals a linear relation between the SHG intensity and membrane voltage. The results suggest that due to the high ionic strengths and fast optical response of biofluids, membrane hydration is not the main contributor to the observed field sensitivity. A conceptual framework is further provided that indicates that the SHG voltage sensitivity reflects the electric field within the biological asymmetric lipid bilayer owing to a nonzero χeff(2) tensor. Changing the TMP without surface modifications such as electrolyte screening offers high optical sensitivity to membrane voltage (≈40% per 100 mV), indicating the power of SHG for label-free read-out. These results hold promise for the design of a non-invasive label-free read-out tool for electrogenic cells.


Assuntos
Microscopia de Geração do Segundo Harmônico , Corantes , Células HEK293 , Humanos , Potenciais da Membrana
3.
Opt Express ; 28(11): 16708-16724, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549487

RESUMO

Structured illumination microscopy (SIM) is a widely used super resolution imaging technique that can down-modulate a sample's high-frequency information into objective recordable frequencies to enhance the resolution below the diffraction limit. However, classical SIM image reconstruction methods often generate poor results under low illumination conditions, which are required for reducing photobleaching and phototoxicity in cell imaging experiments. Although denoising methods or auxiliary items improved SIM image reconstruction in low signal level situations, they still suffer from decreased reconstruction quality and significant background artifacts, inevitably limiting their practical applications. In order to improve the reconstruction quality, second-order optimized regularized SIM (sorSIM) is designed specifically for image reconstruction in low signal level situations. In sorSIM, a second-order regularization term is introduced to suppress noise effect, and the penalty factor in this term is selected to optimize the resolution enhancement and noise resistance. Compared to classical SIM image reconstruction algorithms as well as to those previously used in low illumination cases, the proposed sorSIM provides images with enhanced resolution and fewer background artifacts. Therefore, sorSIM can be a potential tool for high-quality and rapid super resolution imaging, especially for low signal images.

4.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887387

RESUMO

Hematopoietic stem/progenitor cells (HSPCs) are responsible for the generation of blood cells throughout life. It is believed that, in addition to soluble cytokines and niche cells, biophysical cues like elasticity and oxygen tension are responsible for the orchestration of stem cell fate. Although several studies have examined the effects of bone marrow (BM) niche elasticity on HSPC behavior, no study has yet investigated the effects of the elasticity of other niche sites like the fetal liver (FL), where HSPCs expand more extensively. In this study, we evaluated the effect of matrix stiffness values similar to those of the FL on BM-derived HSPC expansion. We first characterized the elastic modulus of murine FL tissue at embryonic day E14.5. Fibrin hydrogels with similar stiffness values as the FL (soft hydrogels) were compared with stiffer fibrin hydrogels (hard hydrogels) and with suspension culture. We evaluated the expansion of total nucleated cells (TNCs), Lin-/cKit+ cells, HSPCs (Lin-/Sca+/cKit+ (LSK) cells), and hematopoietic stem cells (HSCs: LSK- Signaling Lymphocyte Activated Molecule (LSK-SLAM) cells) when cultured in 5% O2 (hypoxia) or in normoxia. After 10 days, there was a significant expansion of TNCs and LSK cells in all culture conditions at both levels of oxygen tension. LSK cells expanded more in suspension culture than in both fibrin hydrogels, whereas TNCs expanded more in suspension culture and in soft hydrogels than in hard hydrogels, particularly in normoxia. The number of LSK-SLAM cells was maintained in suspension culture and in the soft hydrogels but not in the hard hydrogels. Our results indicate that both suspension culture and fibrin hydrogels allow for the expansion of HSPCs and more differentiated progeny whereas stiff environments may compromise LSK-SLAM cell expansion. This suggests that further research using softer hydrogels with stiffness values closer to the FL niche is warranted.


Assuntos
Embrião de Mamíferos/citologia , Feto/citologia , Células-Tronco Hematopoéticas/citologia , Hidrogéis/química , Fígado/embriologia , Oxigênio/metabolismo , Nicho de Células-Tronco/fisiologia , Animais , Biomimética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Elasticidade , Embrião de Mamíferos/metabolismo , Feto/metabolismo , Fibrina/química , Células-Tronco Hematopoéticas/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
5.
Chemphyschem ; 20(13): 1765-1774, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31020783

RESUMO

Gold nanoparticles (AuNPs) are regarded as promising building blocks in functional nanomaterials for sensing, drug delivery and catalysis. One remarkable property of these particles is the localized surface plasmon resonance (LSPR), which gives rise to augmented optical properties through local field enhancement. LSPR also influences the nonlinear optical properties of metal NPs (MNPs) making them potentially interesting candidates for fast, high resolution nonlinear optical imaging. In this work we characterize and discuss the wavelength dependence of the hyper-Rayleigh scattering (HRS) behavior of spherical gold nanoparticles (GNP) and gold nanorods (GNR) in solution, from 850 nm up to 1300 nm, covering the near-infrared (NIR) window relevant for deep tissue imaging. The high-resolution spectral data allows discriminating between HRS and two photon photoluminescence contributions. Upon particle aggregation, we measured very large enhancements (ca. 104 ) of the HRS intensity in the NIR, which is explained by considering aggregation-induced plasmon coupling effects and local field enhancement. These results indicate that purposely designed coupled nanostructures could prove advantageous for nonlinear optical imaging and biosensing applications.

6.
Langmuir ; 33(19): 4840-4846, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28427260

RESUMO

Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.

7.
Inorg Chem ; 56(20): 12401-12409, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28949129

RESUMO

The stability of the Keggin polycation ε-Al13 is monitored by 27Al NMR and ferron colorimetric assay upon heating aluminum aqueous solutions containing different amino acids with overall positive, negative, or no charge at pH 4.2. A focus on the effect of the amino acids on the isomerization process from ε- to δ-Al13 is made, compared and discussed as a function of the type of organic additive. Amino acids such as glycine and ß-alanine, with only one functional group interacting relatively strongly with aluminum polycations, accelerate isomerization in a concentration-dependent manner. The effect of this class of amino acids is also found increasing with the pKa of their carboxylic acid moiety, from a low impact from proline up to more than a 15-fold increased rate from the stronger binders such as glycine or ß-alanine. Amino acids with relatively low C-terminal pKa, but bearing additional potential binding moieties such as free alcohol (hydroxyl group) moiety of serine or the amide of glutamine, speed the isomerization comparatively and even more than glycine or ß-alanine, glutamine leading to the fastest rates observed so far. With aspartic and glutamic acids, changes in aluminum speciation are faster and significant even at room temperature but rather related to the reorganization toward slow reacting complexed oligomers than to the Al13 isomerization process. The linear relation between the apparent rate constant of isomerization and the additive concentration points to a first-order process with respect to the additives. Most likely, the dominant process is an accelerated ε-Al13 dissociation, increasing the probability of δ isomer formation.

8.
J Biol Chem ; 289(45): 30977-89, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25253695

RESUMO

Missense mutations in alanine 673 of the amyloid precursor protein (APP), which corresponds to the second alanine of the amyloid ß (Aß) sequence, have dramatic impact on the risk for Alzheimer disease; A2V is causative, and A2T is protective. Assuming a crucial role of amyloid-Aß in neurodegeneration, we hypothesized that both A2V and A2T mutations cause distinct changes in Aß properties that may at least partially explain these completely different phenotypes. Using human APP-overexpressing primary neurons, we observed significantly decreased Aß production in the A2T mutant along with an enhanced Aß generation in the A2V mutant confirming earlier data from non-neuronal cell lines. More importantly, thioflavin T fluorescence assays revealed that the mutations, while having little effect on Aß42 peptide aggregation, dramatically change the properties of the Aß40 pool with A2V accelerating and A2T delaying aggregation of the Aß peptides. In line with the kinetic data, Aß A2T demonstrated an increase in the solubility at equilibrium, an effect that was also observed in all mixtures of the A2T mutant with the wild type Aß40. We propose that in addition to the reduced ß-secretase cleavage of APP, the impaired propensity to aggregate may be part of the protective effect conferred by A2T substitution. The interpretation of the protective effect of this mutation is thus much more complicated than proposed previously.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Precursor de Proteína beta-Amiloide/genética , Fragmentos de Peptídeos/química , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Benzotiazóis , Encéfalo/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular , Cricetinae , Modelos Animais de Doenças , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Mutação , Neurônios/citologia , Neurônios/metabolismo , Solubilidade , Termodinâmica , Tiazóis/química
9.
Nanotechnology ; 26(25): 255703, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26031426

RESUMO

The photoluminescence (PL) of colloidal quantum dots (QDs) is known to be sensitive to the solution pH. In this work we investigate the role played by the organic coating in determining the pH-dependent PL. We compare two types of CdSe/ZnS QDs equipped with different organic coatings, namely dihydrolipoic acid (DHLA)-capped QDs and phospholipid micelle-encapsulated QDs. Both QD types have their PL intensity quenched at acidic pH values, but they differ in terms of the reversibility of the quenching process. For DHLA-capped QDs, the quenching is nearly irreversible, with a small reversible component visible only on short time scales. For phospholipid micelle-encapsulated QDs the quenching is notably almost fully reversible. We suggest that the surface passivation by the organic ligands is reversible for the micelle-encapsulated QDs. Additionally, both coatings display pH-dependent spectral shifts. These shifts can be explained by a combination of irreversible processes, such as photo-oxidation and acid etching, and reversible charging of the QD surface, leading to the quantum-confined Stark effect (QCSE), the extent of each effect being coating-dependent. At high ionic strengths, the aggregation of QDs also leads to a spectral (red) shift, which is attributable to the QCSE and/or electronic energy transfer.

10.
EMBO J ; 29(19): 3408-20, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20818335

RESUMO

The amyloid peptides Aß(40) and Aß(42) of Alzheimer's disease are thought to contribute differentially to the disease process. Although Aß(42) seems more pathogenic than Aß(40), the reason for this is not well understood. We show here that small alterations in the Aß(42):Aß(40) ratio dramatically affect the biophysical and biological properties of the Aß mixtures reflected in their aggregation kinetics, the morphology of the resulting amyloid fibrils and synaptic function tested in vitro and in vivo. A minor increase in the Aß(42):Aß(40) ratio stabilizes toxic oligomeric species with intermediate conformations. The initial toxic impact of these Aß species is synaptic in nature, but this can spread into the cells leading to neuronal cell death. The fact that the relative ratio of Aß peptides is more crucial than the absolute amounts of peptides for the induction of neurotoxic conformations has important implications for anti-amyloid therapy. Our work also suggests the dynamic nature of the equilibrium between toxic and non-toxic intermediates.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Neurônios/metabolismo , Fragmentos de Peptídeos/toxicidade , Placa Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Análise de Variância , Animais , Benzotiazóis , Biofísica , Corantes Fluorescentes , Humanos , Cinética , Camundongos , Microeletrodos , Microscopia Eletrônica de Transmissão , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Tiazóis
11.
Carbohydr Polym ; 333: 121949, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494215

RESUMO

Alkali and quaternary ammonium cations interact with negatively charged cellulose nanocrystals (CNCs) bearing sulfated or carboxylated functional groups. As these are some of the most commonly occurring cations CNC encounter in applications, the thermodynamic parameters of these CNC-counterion interactions were evaluated with isothermal titration calorimetry (ITC). Whereas the adsorption of monovalent counterions onto CNCs was thermodynamically favourable at all evaluated conditions as indicated by a negative Gibbs free energy, the enthalpic and entropic contributions to the CNC-ion interactions were found to be strongly dependent on the hydration characteristics of the counterion and could be correlated with the potential barrier to water exchange of the respective ions. The adsorption of chaotropic cations onto the surface was exothermic, while the interactions with kosmotropic cations were endothermic and completely entropy-driven. The interactions of CNCs with more bulky quaternary ammonium counterions were more complex, and the mechanism of interaction shifted from electrostatic interactions with surface charged groups of CNCs towards adsorption of alkyl chains onto the CNC hydrophobic planes when the alkyl chain length increased.

12.
Nanomaterials (Basel) ; 14(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38470785

RESUMO

Different microscopy and scattering methods used in the literature to determine the dimensions of cellulose nanocrystals derived from cotton and bacterial cellulose were compared to investigate potential bias and discrepancies. Atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), depolarized dynamic light scattering (DDLS), and static light scattering (SLS) were compared. The lengths, widths, and heights of the particles and their respective distributions were determined by AFM. In agreement with previous work, the CNCs were found to have a ribbon-like shape, regardless of the source of cellulose or the surface functional groups. Tip broadening and agglomeration of the particles during deposition cause AFM-derived lateral dimensions to be systematically larger those obtained from SAXS measurements. The radius of gyration determined by SLS showed a good correlation with the dimensions obtained by AFM. The hydrodynamic lateral dimensions determined by DDLS were found to have the same magnitude as either the width or height obtained from the other techniques; however, the precision of DDLS was limited due to the mismatch between the cylindrical model and the actual shape of the CNCs, and to constraints in the fitting procedure. Therefore, the combination of AFM and SAXS, or microscopy and small-angle scattering, is recommended for the most accurate determination of CNC dimensions.

13.
Langmuir ; 29(49): 15328-35, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24117376

RESUMO

The immobilization of proteins on flat substrates plays an important role for a wide spectrum of applications in the fields of biology, medicine, and biochemistry, among others. An essential prerequisite for the use of proteins (e.g., in biosensors) is the conservation of their biological activity. Losses in activity upon protein immobilization can largely be attributed to a random attachment of the proteins to the surface. In this study, we present an approach for the immobilization of proteins onto a chemically heterogeneous surface, namely a surface consisting of protein-permissive and protein-repellent areas, which allows for significant reduction of random protein attachment. As protein-permissive, i.e., as protein-binding sites, ultra pure metallic nanoparticles are deposited under vacuum onto a protein-repellent PEG-silane polymer layer. Using complementary surface characterization techniques (atomic force microscopy, quartz crystal microbalance, and X-ray photoelectron spectroscopy) we demonstrate that the Au nanoparticles remain accessible for protein attachment without compromising the protein-repellency of the PEG-silane background. Moreover, we show that the amount of immobilized protein can be controlled by tuning the Au nanoparticle coverage. This method shows potential for applications requiring the control of protein immobilization down to the single molecule level.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Vácuo
14.
Gels ; 9(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36826323

RESUMO

Over recent years, nano-engineered materials have become an important component of artificial extracellular matrices. On one hand, these materials enable static enhancement of the bulk properties of cell scaffolds, for instance, they can alter mechanical properties or electrical conductivity, in order to better mimic the in vivo cell environment. Yet, many nanomaterials also exhibit dynamic, remotely tunable optical, electrical, magnetic, or acoustic properties, and therefore, can be used to non-invasively deliver localized, dynamic stimuli to cells cultured in artificial ECMs in three dimensions. Vice versa, the same, functional nanomaterials, can also report changing environmental conditions-whether or not, as a result of a dynamically applied stimulus-and as such provide means for wireless, long-term monitoring of the cell status inside the culture. In this review article, we present an overview of the technological advances regarding the incorporation of functional nanomaterials in artificial extracellular matrices, highlighting both passive and dynamically tunable nano-engineered components.

15.
Biosens Bioelectron ; 226: 115121, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36774733

RESUMO

Foreign body response (FBR), inflammation, and fibrotic encapsulation of neural implants remain major problems affecting the impedance of the electrode-tissue interface and altering the device performance. Adhesion of proteins and cells (e.g., pro-inflammatory macrophages, and fibroblasts) triggers the FBR cascade and can be diminished by applying antifouling coatings onto the implanted devices. In this paper, we report the deposition and characterization of a thin (±6 nm) sulfobetaine-based coating onto microfabricated platinum electrodes and cochlear implant (CI) electrode arrays. We found that this coating has stable cell and protein-repellent properties, for at least 31 days in vitro, not affected by electrical stimulation protocols. Additionally, its effect on the electrochemical properties relevant to stimulation (i.e., impedance, charge injection capacity) was negligible. When applied to clinical CI electrode arrays, the film was successful at inhibiting fibroblast adhesion on both the silicone packaging and the platinum/iridium electrodes. In vitro, in fibroblast cultures, coated CI electrode arrays maintained impedance values up to five times lower compared to non-coated devices. Our studies demonstrate that such thin sulfobetaine containing layers are stable and prevent protein and cell adhesion in vitro and are compatible for use on CI electrode arrays. Future in vivo studies should be conducted to investigate its ability to mitigate biofouling, fibrosis, and the resulting impedance changes upon long-term implantation in vivo.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Incrustação Biológica/prevenção & controle , Platina/química , Materiais Revestidos Biocompatíveis/química , Eletrodos Implantados , Impedância Elétrica
16.
ACS Chem Neurosci ; 13(6): 786-795, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35201761

RESUMO

Aggregation of amyloid ß peptides is known to be one of the main processes responsible for Alzheimer's disease. The resulting dementia is believed to be due in part to the formation of potentially toxic oligomers. However, the study of such intermediates and the understanding of how they form are very challenging because they are heterogeneous and transient in nature. Unfortunately, few techniques can quantify, in real time, the proportion and the size of the different soluble species during the aggregation process. In a previous work (Deleanu et al. Anal. Chem. 2021, 93, 6523-6533), we showed the potential of Taylor dispersion analysis (TDA) in amyloid speciation during the aggregation process of Aß (1-40) and Aß (1-42). The current work aims at exploring in detail the aggregation of amyloid Aß (1-40):Aß (1-42) peptide mixtures with different proportions of each peptide (1:0, 3:1, 1:1, 1:3, and 0:1) using TDA and atomic force microscopy (AFM). TDA allowed for monitoring the kinetics of the amyloid assembly and quantifying the transient intermediates. Complementarily, AFM allowed the formation of insoluble fibrils to be visualized. Together, the two techniques enabled us to study the influence of the peptide ratios on the kinetics and the formation of potentially toxic oligomeric species.


Assuntos
Doença de Alzheimer , Amiloidose , Amiloide , Peptídeos beta-Amiloides , Humanos , Cinética , Microscopia de Força Atômica , Fragmentos de Peptídeos
17.
Acta Biomater ; 150: 128-137, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35842033

RESUMO

Disease research and drug screening platforms require in vitro model systems with cellular cues resembling those of natural tissues. Fibrillar alignment, occurring naturally in extracellular matrices, is one of the crucial attributes in tissue development. Obtaining fiber alignment in 3D, in vitro remains an important challenge due to non-linear material characteristics. Here, we report a cell-compatible, shear stress-based method allowing to obtain 3D homogeneously aligned fibrillar collagen hydrogels. Controlling the shear-stress during gelation results in low strain rates, with negligible effects on the viability of embedded SH-SY5Y cells. Our approach offers reproducibility and tunability through a paradigm shift: The shear-stress initiation moment, being the critical optimization parameter in the process, is related to the modulus of the developing gel, whereas state of the art methods often rely on a predefined time to initiate the alignment procedure. After curing, the induced 3D alignment is maintained after the release of stress, with a linear relation between the total acquired strain and the fiber alignment. This method is generally applicable to 3D fibrillar materials and stress/pressure-controlled setups, making it a valuable addition to the fast-growing field of tissue engineering. STATEMENT OF SIGNIFICANCE: Controlling fiber alignment in vitro 3D hydrogels is crucial for developing physiologically relevant model systems. However, it remains challenging due to the non-linear material characteristics of fibrillar hydrogels, limiting the scalability and repeatability. Our approach tackles these challenges by utilizing a stress-controlled rheometer allowing us to monitor structural changes in situ and determine the optimal moment for applying a shear-stress inducing alignment. By careful parameter control, we infer the relationship between time, induced strain, alignment and biocompatibility. This tunable and reproducible method is both scalable and generally applicable to any fibrillar hydrogel, therefore, we believe it is useful for research investigating the link between matrix anisotropy and cell behavior in 3D systems, organ-on-chip technologies and drug research.


Assuntos
Hidrogéis , Neuroblastoma , Colágeno Tipo I/química , Humanos , Hidrogéis/química , Reprodutibilidade dos Testes , Engenharia Tecidual/métodos
18.
Adv Sci (Weinh) ; 9(24): e2200459, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780480

RESUMO

Despite the importance of cell characterization and identification for diagnostic and therapeutic applications, developing fast and label-free methods without (bio)-chemical markers or surface-engineered receptors remains challenging. Here, we exploit the natural cellular response to mild thermal stimuli and propose a label- and receptor-free method for fast and facile cell characterization. Cell suspensions in a dedicated sensor are exposed to a temperature gradient, which stimulates synchronized and spontaneous cell-detachment with sharply defined time-patterns, a phenomenon unknown from literature. These patterns depend on metabolic activity (controlled through temperature, nutrients, and drugs) and provide a library of cell-type-specific indicators, allowing to distinguish several yeast strains as well as cancer cells. Under specific conditions, synchronized glycolytic-type oscillations are observed during detachment of mammalian and yeast-cell ensembles, providing additional cell-specific signatures. These findings suggest potential applications for cell viability analysis and for assessing the collective response of cancer cells to drugs.


Assuntos
Células Eucarióticas , Saccharomyces cerevisiae , Animais , Glicólise , Mamíferos , Saccharomyces cerevisiae/metabolismo
19.
Neurobiol Dis ; 44(3): 284-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21807097

RESUMO

APP.V717I and Tau.P301L transgenic mice develop Alzheimer's disease pathology comprising important aspects of human disease including increased levels of amyloid peptides, cognitive and motor impairment, amyloid plaques and neurofibrillary tangles. The combined model, APP.V717I×Tau.P301L bigenic mice (biAT mice) exhibit aggravated amyloid and tau pathology with severe cognitive and behavioral defects. In the present study, we investigated early changes in synaptic function in the CA1 and CA3 regions of acute hippocampal slices of young APP.V717I, Tau.P301L and biAT transgenic animals. We have used planar multi-electrode arrays (MEA) and improved methods for simultaneous multi-site recordings from two hippocampal sub-regions. In the CA1 region, long-term potentiation (LTP) was severely impaired in all transgenic animals when compared with age-matched wild-type controls, while basal synaptic transmission and paired-pulse facilitation were minimally affected. In the CA3 region, LTP was normal in Tau.P301L and APP.V717I but clearly impaired in biAT mice. Surprisingly, frequency facilitation in CA3 was significantly enhanced in Tau.P301L mice, while not affected in APP.V717I mice and depressed in biAT mice. The findings demonstrate important synaptic changes that differ considerably in the hippocampal sub-regions already at young age, well before the typical amyloid or tau pathology is evident.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Eletrodos , Hipocampo/patologia , Hipocampo/fisiopatologia , Sinapses/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Biofísica , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Técnicas In Vitro , Isoleucina/genética , Potenciação de Longa Duração/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Sinapses/fisiologia , Fatores de Tempo , Valina/genética , Proteínas tau/genética
20.
Anal Chem ; 83(11): 4012-22, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21545093

RESUMO

The electrochemistry of 50 µm diameter Pt electrodes used for neural stimulation was studied in vitro by reciprocal derivative chronopotentiometry. This differential method provides well-defined electrochemical signatures of the various polarization phenomena that occur at Pt microelectrodes and are generally obscured in voltage transients. In combination with a novel in situ coulometric approach, irreversible H(2) and O(2) evolution, Pt dissolution and reduction of dissolved O(2) were detected. Measurements were performed with biphasic, charge-balanced, cathodic-first and anodic-first current pulses at charge densities ranging from 0.07 to 1.41 mC/cm(2) (real surface area) in phosphate buffered saline (PBS) with and without bovine serum albumin (BSA). The extent to which O(2) reduction occurs under the different stimulation conditions was compared in O(2)-saturated and deoxygenated PBS. Adsorption of BSA inhibited Pt dissolution as well as Pt oxidation and oxide reduction by blocking reactive sites on the electrode surface. This inhibitory effect promoted the onset of irreversible H(2) and O(2) evolution, which occurred at lower charge densities than those in PBS. Reduction of dissolved O(2) on Pt electrodes accounted for 19-34% of the total injected charge in O(2)-saturated PBS, while a contribution of 0.4-12% was estimated for in vivo stimulation. These result may prove important for the interpretation of histological damage induced by neural stimulation and therefore help define safer operational limits.


Assuntos
Técnicas Eletroquímicas/métodos , Platina/química , Animais , Bovinos , Gases/química , Hidrogênio/química , Microeletrodos , Neurônios/química , Oxirredução , Oxigênio/química , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA