Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(9): 091301, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083643

RESUMO

We study the generation and evolution of second-order energy-density perturbations arising from primordial gravitational waves. Such "tensor-induced scalar modes" approximately evolve as standard linear matter perturbations and may leave observable signatures in the large-scale structure of the Universe. We study the imprint on the matter power spectrum of some primordial models which predict a large gravitational-wave signal at high frequencies. This novel mechanism, in principle, allows us to constrain or detect primordial gravitational waves by looking at specific features in the matter or galaxy power spectrum, thereby allowing us to probe them on a range of scales unexplored so far.

2.
Living Rev Relativ ; 21(1): 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674941

RESUMO

Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

3.
Phys Rev Lett ; 113(16): 161303, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25361248

RESUMO

We show that modifications of Einstein gravity during inflation could leave potentially measurable imprints on cosmological observables in the form of non-Gaussian perturbations. This is due to the fact that these modifications appear in the form of an extra field that could have nontrivial interactions with the inflaton. We show it explicitly for the case R+αR(2), where nearly scale-invariant non-Gaussianity at the level of f(NL) ≈ - (1 to 30) can be obtained, in a quasilocal configuration.

4.
Living Rev Relativ ; 16(1): 6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-29142500

RESUMO

Euclid is a European Space Agency medium-class mission selected for launch in 2019 within the Cosmic Vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

5.
ACS Nano ; 14(8): 10219-10225, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806034

RESUMO

During the past decade, it has been shown that light-matter strong coupling of materials can lead to modified and often improved properties which has stimulated considerable interest. While charge transport can be enhanced in n-type organic semiconductors by coupling the electronic transition and thereby splitting the conduction band into polaritonic states, it is not clear whether the same process can also influence carrier transport in the valence band of p-type semiconductors. Here we demonstrate that it is indeed possible to enhance both the conductivity and photoconductivity of a p-type semiconductor rr-P3HT that is ultrastrongly coupled to plasmonic modes. It is due to the hybrid light-matter character of the virtual polaritonic excitations affecting the linear response of the material. Furthermore, in addition to being enhanced, the photoconductivity of rr-P3HT shows a modified spectral response due to the formation of the hybrid polaritonic states. This illustrates the potential of engineering the vacuum electromagnetic environment to improve the optoelectronic properties of organic materials.

6.
Sci Rep ; 6: 26987, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27244292

RESUMO

In quantum optics, photonic Schrödinger cats are superpositions of two coherent states with opposite phases and with a significant number of photons. Recently, these states have been observed in the transient dynamics of driven-dissipative resonators subject to engineered two-photon processes. Here we present an exact analytical solution of the steady-state density matrix for this class of systems, including one-photon losses, which are considered detrimental for the achievement of cat states. We demonstrate that the unique steady state is a statistical mixture of two cat-like states with opposite parity, in spite of significant one-photon losses. The transient dynamics to the steady state depends dramatically on the initial state and can pass through a metastable regime lasting orders of magnitudes longer than the photon lifetime. By considering individual quantum trajectories in photon-counting configuration, we find that the system intermittently jumps between two cats. Finally, we propose and study a feedback protocol based on this behaviour to generate a pure cat-like steady state.


Assuntos
Dinâmica não Linear , Óptica e Fotônica/estatística & dados numéricos , Fótons , Simulação por Computador , Retroalimentação , Teoria Quântica
7.
J Phys Condens Matter ; 27(21): 214015, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25965189

RESUMO

We consider and review the emergence of singular field fluctuations or energy densities at sharp boundaries or point-like field sources in the vacuum. The presence of singular energy densities of a field may be relevant from a conceptual point of view, because they contribute to the self-energy of the system. They could also generate significant gravitational effects. We first consider the case of the interface between a metallic boundary and the vacuum, and obtain the structure of the singular electric and magnetic energy densities at the interface through an appropriate limit from a dielectric to an ideal conductor. Then, we consider the case of a nondispersive and nondissipative point-like source of the electromagnetic field, described by its polarizability, and show that also in this case the electric and magnetic energy densities show a singular structure at the source position. We discuss how, in both cases, these singularities give an essential contribution to the electromagnetic self-energy of the system; moreover, they solve an apparent inconsistency between the space integral of the field energy density and the average value of the field Hamiltonian. The singular behavior we find is softened, or even eliminated, for boundaries fluctuating in space and for extended field sources. We discuss in detail the case in which a reflecting boundary is not fixed in space but is allowed to move around an equilibrium position, under the effect of quantum fluctuations of its position. Specifically, we consider the simple case of a 1D massless scalar field in a cavity with one fixed and one mobile wall described quantum-mechanically. We investigate how the possible motion of the wall changes the vacuum fluctuations and the energy density of the field, compared with the fixed-wall case. Also, we explicitly show how the fluctuating motion of the wall smears out the singular behaviour of the field energy density at the boundary.

8.
Phys Rev Lett ; 93(23): 231301, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15601141

RESUMO

We provide the gauge-invariant expression for large-scale cosmic microwave background temperature fluctuations at second-order perturbation theory. This enables us to define unambiguously the nonlinearity parameter f(NL), which is used by experimental collaborations to pin down the level of non-Gaussianity in the temperature fluctuations. Furthermore, it contains a primordial term encoding all the information about the non-Gaussianity generated at primordial epochs and about the mechanism which gave rise to cosmological perturbations, thus neatly disentangling the primordial contribution to non-Gaussianity from the one caused by the postinflationary evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA