Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Rep ; 11(6): e15650, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36967231

RESUMO

Loss of the mediator Of cell motility 1 (Memo1) in mice caused kidney disease and a bone disease with diminished osteoblast and osteoclast biomarkers in serum, resembling alterations occurring in adynamic bone disease in humans with chronic kidney disease or in Klotho-deficient mice. Here, we investigated whether Memo1 expression in osteoblasts is required for normal bone structure and FGF23 expression. We deleted Memo1 in the osteoblast-osteocyte lineage in Memo fl/fl mice using a Cre under Col1a1 promotor to obtain osteoblast-specific knockout (obKO) mice. We studied organs by micro-computed tomography, qPCR, and western blot. We challenged mice with folic acid for acute kidney injury (AKI) and analyzed organs. Memo obKO were viable without changes in gross anatomy, serum electrolytes, or circulating FGF23 concentrations compared to controls. Memo1 expression was blunted in bones of Memo obKO, whereas it remained unchanged in other organs. Micro-CT revealed no differences between genotypes in bone structure of vertebrae, femur, and tibia. During AKI, Fgf23 expression in calvaria, and renal transcriptional changes were comparable between genotypes. However, renal injury marker expression, circulating FGF23, and parathyroid hormone revealed a sex difference with more severely affected females than males of either genotype. The present data imply that Memo1 in osteoblasts is dispensable for bone structure and expression of Fgf23. Moreover, we found evidence of potential sex differences in murine folic acid nephropathy similar to other experimental models of renal injury that are important to consider when using this experimental model of renal injury.


Assuntos
Injúria Renal Aguda , Doenças Ósseas , Peptídeos e Proteínas de Sinalização Intracelular , Animais , Feminino , Humanos , Masculino , Camundongos , Injúria Renal Aguda/metabolismo , Doenças Ósseas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Ácido Fólico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/metabolismo , Osteoblastos/metabolismo , Microtomografia por Raio-X
2.
J Cell Commun Signal ; 17(3): 705-722, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36434320

RESUMO

Memo1 deletion in mice causes premature aging and an unbalanced metabolism partially resembling Fgf23 and Klotho loss-of-function animals. We report a role for Memo's redox function in renal FGF23-Klotho signaling using mice with postnatally induced Memo deficiency in the whole body (cKO). Memo cKO mice showed impaired FGF23-driven renal ERK phosphorylation and transcriptional responses. FGF23 actions involved activation of oxidation-sensitive protein phosphotyrosyl phosphatases in the kidney. Redox proteomics revealed excessive thiols of Rho-GDP dissociation inhibitor 1 (Rho-GDI1) in Memo cKO, and we detected a functional interaction between Memo's redox function and oxidation at Rho-GDI1 Cys79. In isolated cellular systems, Rho-GDI1 did not directly affect FGF23-driven cell signaling, but we detected disturbed Rho-GDI1 dependent small Rho-GTPase protein abundance and activity in the kidney of Memo cKO mice. Collectively, this study reveals previously unknown layers in the regulation of renal FGF23 signaling and connects Memo with the network of small Rho-GTPases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA