Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 70(3): 536-557, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34854502

RESUMO

Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.


Assuntos
Ataxia Telangiectasia , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cerebelo/metabolismo , Feminino , Masculino , Camundongos , Microglia/metabolismo , Neurônios/metabolismo
2.
Nucleic Acids Res ; 48(19): 10924-10939, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33010171

RESUMO

NBS1 is a critical component of the MRN (MRE11/RAD50/NBS1) complex, which regulates ATM- and ATR-mediated DNA damage response (DDR) pathways. Mutations in NBS1 cause the human genomic instability syndrome Nijmegen Breakage Syndrome (NBS), of which neuronal deficits, including microcephaly and intellectual disability, are classical hallmarks. Given its function in the DDR to ensure proper proliferation and prevent death of replicating cells, NBS1 is essential for life. Here we show that, unexpectedly, Nbs1 deletion is dispensable for postmitotic neurons, but compromises their arborization and migration due to dysregulated Notch signaling. We find that Nbs1 interacts with NICD-RBPJ, the effector of Notch signaling, and inhibits Notch activity. Genetic ablation or pharmaceutical inhibition of Notch signaling rescues the maturation and migration defects of Nbs1-deficient neurons in vitro and in vivo. Upregulation of Notch by Nbs1 deletion is independent of the key DDR downstream effector p53 and inactivation of each MRN component produces a different pattern of Notch activity and distinct neuronal defects. These data indicate that neuronal defects and aberrant Notch activity in Nbs1-deficient cells are unlikely to be a direct consequence of loss of MRN-mediated DDR function. This study discloses a novel function of NBS1 in crosstalk with the Notch pathway in neuron development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurogênese , Neurônios/metabolismo , Receptores Notch/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Animais , Células Cultivadas , Dano ao DNA , Reparo do DNA , Embrião de Mamíferos , Fibroblastos , Proteína Homóloga a MRE11/metabolismo , Camundongos , Neurônios/citologia
3.
Proc Natl Acad Sci U S A ; 115(31): 8025-8030, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012604

RESUMO

Evidence suggests that astrocytes play key roles in structural and functional organization of neuronal circuits. To understand how astrocytes influence the physiopathology of cerebellar circuits, we cultured cells from cerebella of mice that lack the ATM gene. Mutations in ATM are causative of the human cerebellar degenerative disease ataxia-telangiectasia. Cerebellar cultures grown from Atm-/- mice had disrupted network synchronization, atrophied astrocytic arborizations, reduced autophagy levels, and higher numbers of synapses per neuron than wild-type cultures. Chimeric circuitries composed of wild-type astrocytes and Atm-/- neurons were indistinguishable from wild-type cultures. Adult cerebellar characterizations confirmed disrupted astrocyte morphology, increased GABAergic synaptic markers, and reduced autophagy in Atm-/- compared with wild-type mice. These results indicate that astrocytes can impact neuronal circuits at levels ranging from synaptic expression to global dynamics.


Assuntos
Astrócitos/fisiologia , Doenças Cerebelares/fisiopatologia , Rede Nervosa/fisiopatologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Autofagia , Células Cultivadas , Camundongos , Sinapses/fisiologia
4.
Neurobiol Dis ; 96: 84-94, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27544484

RESUMO

In Alzheimer's disease (AD), astrocytes undergo morphological changes ranging from atrophy to hypertrophy, but the effect of such changes at the functional level is still largely unknown. Here, we aimed to investigate whether alterations in astrocyte activity in AD are transient and depend on their microenvironment, or whether they are irreversible. We established and characterized a new protocol for the isolation of adult astrocytes and discovered that astrocytes isolated from old 5xFAD mice have higher GFAP expression than astrocytes derived from WT mice, as observed in vivo. We found high C1q levels in brain sections from old 5xFAD mice in close vicinity to amyloid plaques and astrocyte processes. Interestingly, while old 5xFAD astrocytes are impaired in uptake of soluble Aß42, this effect was reversed upon an addition of exogenous C1q, suggesting a potential role for C1q in astrocyte-mediated Aß clearance. Our results suggest that scavenger receptor B1 plays a role in C1q-facilitated Aß uptake by astrocytes and that expression of scavenger receptor B1 is reduced in adult old 5xFAD astrocytes. Furthermore, old 5xFAD astrocytes show impairment in support of neuronal growth in co-culture and neurotoxicity concomitant with an elevation in IL-6 expression. Further understanding of the impact of astrocyte impairment on AD pathology may provide insights into the etiology of AD.


Assuntos
Envelhecimento , Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica/genética , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Envelhecimento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antígeno CD11b/metabolismo , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-6/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Receptores de Complemento/metabolismo
5.
PLoS Comput Biol ; 10(9): e1003823, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25255443

RESUMO

It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in neuronal circuits, at an early stage of development, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally inspired constraints and correlations in the distribution of the neuronal connectivities and excitabilities leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrate population activity.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Biologia Computacional , Hipocampo/citologia , Rede Nervosa/crescimento & desenvolvimento , Ratos , Sinapses/fisiologia
6.
Neural Regen Res ; 18(3): 497-502, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018153

RESUMO

Accumulating evidence indicates that ataxia-telangiectasia mutated kinase is critical for maintaining cellular homeostasis and that it has both nuclear and cytoplasmic functions. However, the functions of ataxia-telangiectasia mutated that when lost lead to cerebellar degeneration are still unknown. In this review, we first describe the role of ataxia-telangiectasia mutated in cerebellar pathology. In addition to its canonical nuclear functions in DNA damage response circuits, ataxia-telangiectasia mutated functions in various cytoplasmic and mitochondrial processes that are critically important for cellular homeostasis. We discuss these functions with a focus on the role of ataxia-telangiectasia mutated in maintaining the homeostatic redox state. Finally, we describe the unique functions of ataxia-telangiectasia mutated in various types of neuronal and glial cells including cerebellar granule neurons, astrocytes, and microglial cells.

7.
J Biol Chem ; 286(17): 15361-76, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21300797

RESUMO

Ataxia-telangiectasia (A-T) and Nijmegen breakage syndrome (NBS) are related genomic instability syndromes characterized by neurological deficits. The NBS1 protein that is defective in NBS is a component of the Mre11/RAD50/NBS1 (MRN) complex, which plays a major role in the early phase of the complex cellular response to double strand breaks (DSBs) in the DNA. Among others, Mre11/RAD50/NBS1 is required for timely activation of the protein kinase ATM (A-T, mutated), which is missing or inactivated in patients with A-T. Understanding the molecular pathology of A-T, primarily its cardinal symptom, cerebellar degeneration, requires investigation of the DSB response in cerebellar neurons, particularly Purkinje cells, which are the first to be lost in A-T patients. Cerebellar cultures derived from mice with different mutations in DNA damage response genes is a useful experimental system to study malfunctioning of the damage response in the nervous system. To clarify the interrelations between murine Nbs1 and Atm, we generated a mouse strain with specific disruption of the Nbs1 gene in the central nervous system on the background of general Atm deficiency (Nbs1-CNS-Δ//Atm(-/-)). This genotype exacerbated several features of both conditions and led to a markedly reduced life span, dramatic decline in the number of cerebellar granule neurons with considerable cerebellar disorganization, abolishment of the white matter, severe reduction in glial cell proliferation, and delayed DSB repair in cerebellar tissue. Combined loss of Nbs1 and Atm in the CNS significantly abrogated the DSB response compared with the single mutation genotypes. Importantly, the data indicate that Atm has cellular roles not regulated by Nbs1 in the murine cerebellum.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Cerebelo/patologia , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proliferação de Células , Células Cultivadas , Genótipo , Camundongos , Mutação , Neuroglia/patologia , Proteínas Nucleares/genética
8.
Am J Pathol ; 179(3): 1533-41, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21763675

RESUMO

Ataxia-telangiectasia is a multifaceted syndrome caused by null mutations in the ATM gene, which encodes the protein kinase ATM, a key participant in the DNA damage response. Retinal neurons are highly susceptible to DNA damage because they are terminally differentiated and have the highest metabolic activity in the central nervous system. In this study, we characterized the retina in young and aged Atm-deficient mice (Atm(-/-)). At 2 months of age, angiography revealed faint retinal vasculature in Atm(-/-) animals relative to wild-type controls. This finding was accompanied by increased expression of vascular endothelial growth factor protein and mRNA. Fibrinogen, generally absent from wild-type retinal tissue, was evident in Atm(-/-) retinas, whereas mRNA of the tight junction protein occludin was significantly decreased. Immunohistochemistry labeling for occludin in 6-month-old mice showed that this decrease persists in advanced stages of the disease. Concurrently, we noticed vascular leakage in Atm(-/-) retinas. Labeling for glial fibrillary acidic protein demonstrated morphological alterations in glial cells in Atm(-/-) retinas. Electroretinographic examination revealed amplitude aberrations in 2-month-old Atm(-/-) mice, which progressed to significant functional deficits in the older mice. These results suggest that impaired vascularization and astrocyte-endothelial cell interactions in the central nervous system play an important role in the etiology of ataxia-telangiectasia and that vascular abnormalities may underlie or aggravate neurodegeneration.


Assuntos
Ataxia Telangiectasia/etiologia , Doenças Retinianas/etiologia , Animais , Astrócitos/patologia , Ataxia Telangiectasia/patologia , Ataxia Telangiectasia/fisiopatologia , Eletrorretinografia , Endotélio Vascular/fisiologia , Camundongos , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia , Hemorragia Retiniana/patologia , Junções Íntimas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Transl Vis Sci Technol ; 10(10): 16, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34817617

RESUMO

Purpose: Semaphorin 3A (Sema-3A) is a secreted protein that deflects axons from inappropriate regions and induces neuronal cell death. Intravitreal application of polyclonal antibodies against Sema-3A prevents loss of retinal ganglion cells ensuing from axotomy of optic nerves. This suggested a therapeutic approach for neuroprotection via inhibition of the Sema-3A pathway. Methods: To develop potent and specific Sema-3A antagonists, we isolated monoclonal anti-Sema-3A antibodies from a human antibody phage display library and optimized low-molecular weight Sema-3A signaling inhibitors. The best inhibitors were identified using in vitro scratch assays and semiquantitative repulsion assays. Results: A therapeutic approach for neuroprotection must have a long duration of action. Therefore, antibodies and low-molecular weight inhibitors were formulated in extruded implants to allow controlled and prolonged release. Following release from the implants, Sema-3A inhibitors antagonized Sema-3A effects in scratch and repulsion assays and protected retinal ganglion cells in animal models of optic nerve injury, retinal ischemia, and glaucoma. Conclusions and Translational Relevance: Collectively, our findings indicate that the identified Sema-3A inhibitors should be further evaluated as therapeutic candidates for the treatment of Sema-3A-driven central nervous system degenerative processes.


Assuntos
Células Ganglionares da Retina , Semaforina-3A , Animais , Axônios , Axotomia , Movimento Celular , Humanos
10.
Nat Neurosci ; 24(3): 312-325, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589835

RESUMO

Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions.


Assuntos
Envelhecimento/patologia , Astrócitos/patologia , Encéfalo/patologia , Medula Espinal/patologia , Animais , Encefalopatias/patologia , Lesões Encefálicas/patologia , Humanos , Traumatismos da Medula Espinal/patologia
11.
DNA Repair (Amst) ; 8(2): 253-61, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19061978

RESUMO

Ataxia-telangiectasia is a pleiotropic genomic instability disorder caused by lack or inactivation of the ATM protein kinase and characterized by progressive ataxia, immunodeficiency, ionizing radiation sensitivity and cancer predisposition. ATM mobilizes the cellular response to DNA double strand breaks by phosphorylating key players in this response. Double strand breaks are repaired by either nonhomologous end-joining or homologous recombination (HR) in which the Rad54 and Rad54B paralogs function. Here, we investigated the functional relationships between Atm and the Rad54 proteins by constructing compound genotypes in mice. Mouse strains were generated that combined inactivation of the Atm, Rad54 and Rad54B genes. All mutant genotypes were viable, but obtained at sub-Mendelian ratios. Double mutants for Atm and each Rad54 paralog exhibited reduced body weight and shorter lifespan, but no distinct neurological phenotype. Concomitant inactivation of ATM and Rad54 did not increase IR sensitivity; however, the triple Atm/Rad54/Rad54B mutant exhibited a significant IR hypersensitivity compared to the other genotypes. Interestingly, Atm-/- animals also exhibited hypersensitivity to the crosslinking agent mitomycin C, which was increased by deficiency of either one of the Rad54 paralogs. Our results reveal a differential interaction of the ATM-mediated DNA damage response and Rad54 paralog-mediated HR depending on the DNA damaging agent that initiates the response.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Recombinação Genética , Homologia de Sequência de Aminoácidos , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas Cromossômicas não Histona , DNA Helicases , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/deficiência , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Longevidade/efeitos dos fármacos , Longevidade/efeitos da radiação , Camundongos , Camundongos Knockout , Mitomicina/toxicidade , Fenótipo , Proteínas Serina-Treonina Quinases/deficiência , Rad51 Recombinase/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/efeitos da radiação , Análise de Sobrevida , Proteínas Supressoras de Tumor/deficiência , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
12.
Apoptosis ; 15(11): 1371-81, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20437103

RESUMO

The DNA damage response (DDR) is a key factor in the maintenance of genome stability. As such, it is a central axis in sustaining cellular homeostasis in a variety of contexts: development, growth, differentiation, and maintenance of the normal life cycle of the cell. It is now clear that diverse mechanisms encompassing cell cycle regulation, repair pathways, many aspects of cellular metabolism, and cell death are inter-linked and act in concert in response to DNA damage. Defects in the DDR in proliferating cells can lead to cancer, while DDR defects in neurons may result in neurodegeneration. Mature neurons are highly differentiated, post-mitotic cells that cannot be replenished after disease or trauma. Their high metabolic activity generates large amounts of reactive oxygen species with DNA damaging capacity. Moreover, their intense transcriptional activity increases the potential for genomic DNA damage. Respectively, neurons have elaborate mechanisms to defend the integrity of their genome, thus ensuring their longevity and functionality in the face of these threats. Over the course of the past two decades, there has been a substantial increase in our understanding of the role of glial cells in supporting the neuronal cell DDR and longevity. This review article focuses on the potential role of the DDR in the etiology and pathogenesis of neurodegenerative diseases, and in addition, it describes various aspects of glial cell functionality in two genomic instability disorders: ataxia telangiectasia (A-T) and Nijmegen breakage syndrome.


Assuntos
Apoptose , Dano ao DNA , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Neuroglia/citologia , Neurônios/citologia , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo
13.
Graefes Arch Clin Exp Ophthalmol ; 248(10): 1423-35, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20449604

RESUMO

BACKGROUND: Neurons of adult mammalian CNS are prevented from regenerating injured axons due to formation of a non-permissive environment. The retinal ganglion cells (RGC), which are part of the CNS, share this characteristic. In sharp contrast, the RGC of lower vertebrates, such as fish, are capable of re-growing injured optic nerve axons, and achieve, through a complex multi-factorial process, functional vision after injury. Semaphorin-3A (sema-3A), a member of the class 3 semaphorins known for its repellent and apoptotic activities, has previously been shown to play a key role in the formation of a non-permissive environment after CNS injury in mammalians. METHODS: The expression of sema-3A and its effect on regenerative processes in injured gold fish retina and optic nerve were investigated in this study. Unilateral optic nerve axotomy or crush was induced in goldfish. 2 microl sema-3A was injected intraviterally 48 hours post injury. Neuronal viability was measured using the lipophilic neurotracer dye 4-Di-10-Asp. Axonal regeneration was initiated using the anterograde dye dextran. Retinas and optic nerves were collected at intervals of 2, 3, 7, 14 and 28 days after the procedure. Using Western blot and immunohistochemical analysis, the expression levels of semaphorin-3A, axonal regeneration, the removal of myelin debris and macrophage invasion were studied. RESULTS: We found a decrease in sema-3A levels in the retina at an early stage after optic nerve injury, but no change in sema-3A levels in the injured optic nerve. Intravitreal injection of sema-3A to goldfish eye, shortly after optic nerve injury, led to destructive effects on several pathways of the regenerative processes, including the survival of retinal ganglion cells, axonal growth, and clearance of myelin debris from the lesion site by macrophages. CONCLUSIONS: Exogenous administration of sema-3A in fish indirectly interferes with the regeneration process of the optic nerve. The findings corroborate our previous findings in mammals, and further validate sema-3A as a key factor in the generation of a non-permissive environment after transection of the optic nerve.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Nervo Óptico/fisiologia , Células Ganglionares da Retina/fisiologia , Semaforina-3A/fisiologia , Animais , Axotomia , Western Blotting , Contagem de Células , Sobrevivência Celular , Técnica Indireta de Fluorescência para Anticorpo , Carpa Dourada , Injeções , Macrófagos/fisiologia , Compressão Nervosa , Regeneração Nervosa/efeitos dos fármacos , Semaforina-3A/farmacologia , Corpo Vítreo
14.
Sci Rep ; 10(1): 7512, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371937

RESUMO

Restoration of the communication between brain circuitry is a crucial step in the recovery of brain damage induced by traumatic injuries or neurological insults. In this work we present a study of real-time unidirectional communication between a spiking neuronal network (SNN) implemented on digital platform and an in-vitro biological neuronal network (BNN), generating similar spontaneous patterns of activity both spatial and temporal. The communication between the networks was established using patterned optogenetic stimulation via a modified digital light projector (DLP) receiving real-time input dictated by the spiking neurons' state. Each stimulation consisted of a binary image composed of 8 × 8 squares, representing the state of 64 excitatory neurons. The spontaneous and evoked activity of the biological neuronal network was recorded using a multi-electrode array in conjunction with calcium imaging. The image was projected in a sub-portion of the cultured network covered by a subset of the all electrodes. The unidirectional information transmission (SNN to BNN) is estimated using the similarity matrix of the input stimuli and output firing. Information transmission was studied in relation to the distribution of stimulus frequency and stimulus intensity, both regulated by the spontaneous dynamics of the SNN, and to the entrainment of the biological networks. We demonstrate that high information transfer from SNN to BNN is possible and identify a set of conditions under which such transfer can occur, namely when the spiking network synchronizations drive the biological synchronizations (entrainment) and in a linear regime response to the stimuli. This research provides further evidence of possible application of miniaturized SNN in future neuro-prosthetic devices for local replacement of injured micro-circuitries capable to communicate within larger brain networks.


Assuntos
Potenciais de Ação , Redes Neurais de Computação , Neurônios/fisiologia , Optogenética , Animais , Encéfalo/fisiologia , Células Cultivadas , Córtex Cerebral/embriologia , Simulação por Computador , Eletrodos Implantados , Eletrofisiologia , Desenho de Equipamento , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Luz , Microscopia de Fluorescência , Modelos Neurológicos , Neurotransmissores , Ratos , Sinapsinas/genética , Gravação em Vídeo
15.
DNA Repair (Amst) ; 7(7): 1028-38, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18456574

RESUMO

Human genomic instability syndromes affect the nervous system to different degrees of severity, attesting to the vulnerability of the CNS to perturbations of genomic integrity and the DNA damage response (DDR). Ataxia-telangiectasia (A-T) is a typical genomic instability syndrome whose major characteristic is progressive neuronal degeneration but is also associated with immunodeficiency, cancer predisposition and acute sensitivity to ionizing radiation and radiomimetic chemicals. A-T is caused by loss or inactivation of the ATM protein kinase, which mobilizes the complex, multi-branched cellular response to double strand breaks in the DNA by phosphorylating numerous DDR players. The link between ATM's function in the DDR and the neuronal demise in A-T has been questioned in the past. However, recent studies of the ATM-mediated DDR in neurons suggest that the neurological phenotype in A-T is indeed caused by deficiency in this function, similar to other features of the disease. Still, major issues concerning this phenotype remain open, including the presumed differences between the DDR in post-mitotic neurons and proliferating cells, the nature of the damage that accumulates in the DNA of ATM-deficient neurons under normal life conditions, the mode of death of ATM-deficient neurons, and the lack of a major neuronal phenotype in the mouse model of A-T. A-T remains a prototype disease for the study of the DDR's role in CNS development and maintenance.


Assuntos
Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Neurônios/metabolismo , Fenótipo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Humanos , Camundongos , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
16.
DNA Repair (Amst) ; 7(7): 1010-27, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18458000

RESUMO

The DNA damage response is a key factor in the maintenance of genome stability. As such, it is a central axis in sustaining cellular homeostasis in a variety of contexts: development, growth, differentiation, and maintenance of the normal life cycle of the cell. It is now clear that diverse mechanisms encompassing cell cycle regulation, repair pathways, many aspects of cellular metabolism, and cell death are inter-linked and act in consort in response to DNA damage. Defects in the DNA damage response in proliferating cells can lead to cancer while defects in neurons result in neurodegenerative pathologies. Neurons are highly differentiated, post-mitotic cells that cannot be replenished after disease or trauma. Their high metabolic activity that generates large amounts of reactive oxygen species with DNA damaging capacity and their intense transcriptional activity increase the potential for damage of their genomic DNA. Neurons ensure their longevity and functionality in the face of these threats by elaborate mechanisms that defend the integrity of their genome. This review focuses on the DNA damage response in neuronal cells and points to the importance of this elaborate network to the integrity of the nervous system from its early development and throughout the lifetime of the organism.


Assuntos
Dano ao DNA , Neurônios/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Humanos , Modelos Biológicos , Doenças Neurodegenerativas/genética , Estresse Oxidativo
17.
Graefes Arch Clin Exp Ophthalmol ; 247(1): 73-86, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18815803

RESUMO

BACKGROUND: Retinal detachment, as a result of injury or disease, is a severe disorder that may ultimately lead to complete blindness. Despite advanced surgical repair techniques, the visual acuity of patients is often limited. We investigated some of the biochemical and morphological alterations following experimental retinal detachment in laboratory animals. METHODS: Unilateral retinal detachment was induced in male Wistar rats; contralateral untreated eyes served as a control. Approximately half of the retinal area was detached by a sub-retinal injection of 5 mul Saline. The incidence and extent of the retinal detachment was evaluated using MRI analysis and fundus images. The retinas were collected at intervals of 24 hours, 7, 14 and 28 days following the procedure. Using Western blot and immunohistochemical analysis, the expression levels of Semaphorin3A, Neuropilin1, GAP43 and NF-H were studied. In addition, morphological changes in Müller and microglial cells were examined. TUNEL staining was used to assess apoptosis. RESULTS: We found that the expression level of Semaphorin3A was up-regulated and reached its peak at two time points: 24 hours and 14 days after surgery. A similar pattern of expression was found for Neuropilin1. TUNEL-positive cells, indicating apoptotic processes, were evident 24 hours post retinal detachment and increased after 7 days. On the other hand, GAP43 expression was up-regulated 14 days after retinal detachment, and further intensified 28 days post-surgery. Microglial cells were activated shortly after detachment and concentrated mostly at the inner plexiform layer. GFAP staining revealed hypertrophy of Müller cells. CONCLUSIONS: The biochemical and morphological changes suggest that apoptosis as well as axonal regrowth take place following retinal detachment. Collectively, these findings may explain the limited success following repair surgery in terms of visual acuity and physiological function of the retina. Our study may open a new approach for treatment of early phase retinal detachment, as well as improve post-operative care that may, in turn, improve the functional result of the surgery. In addition, further study is required on several other factors that may affect visual acuity, such as size and location of the detached area and the time lapse between detachment and surgery.


Assuntos
Descolamento Retiniano/metabolismo , Descolamento Retiniano/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Semaforina-3A/metabolismo , Animais , Apoptose/fisiologia , Axônios/fisiologia , Western Blotting , Proteína C-Reativa/metabolismo , Modelos Animais de Doenças , Proteína GAP-43/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Imageamento por Ressonância Magnética , Masculino , Microglia/metabolismo , Microglia/patologia , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Wistar , Regulação para Cima/fisiologia
18.
Gigascience ; 8(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544133

RESUMO

Background: Monitoring the activity and morphology of neuron-astrocyte networks in culture is a powerful tool for studying dynamics, structure, and communication in neuron-astrocyte networks independently or as a model of the sub-brain network. These cultures are known to produce stereotypical patterns of activity, e.g., highly synchronized network bursts resembling sleep or seizure states, thus it enables the exploration of behaviors that can relate to brain function and disease. High-resolution microscopy of calcium imaging combined with simultaneous electrical recording provides a comprehensive overview on the network's dynamics. This setup makes it possible to apply global perturbations of electrical and chemical stimulation on the cultures during the recording task and to record the effects on network activity on-line. Morphological changes in the cultures can be obtained to have a complete dataset for structure-function study of neuron-astrocyte networks in vitro. Findings: The 4 TB of data presented here was recorded and imaged as part of an accompanying study looking at in vitro structure-function of neuron-astrocyte networks. Simultaneous optical (calcium imaging) and electrical (micro-electrode array) recordings lasted 5-12 minutes and included spontaneous activity recording, electrical and chemical stimulation of neuron-astrocyte, and isolated astrocyte cultures. The data include activity recordings of 58 different cultures, with 1-2 regions of interest recorded for each culture. Production procedures, experimental protocols, and reuse options are included. The data have been suitable to reveal changes in the activity and morphology of the cultures and enabled observation and analysis of neuron-astrocyte and isolated astrocyte culture behaviors under the applied perturbations. Conclusions: Our dataset is sufficient to show significant changes in activity and morphology of neuron-astrocyte networks in culture under the applied stimulations. More than 100 recordings of 58 different cultures give insight of the observation's significance and led to conclusions about astrocyte activity and neuron-astrocyte network communication. Making it available here will allow others to test new tools for calcium imaging analysis and extracellular neuronal voltage recordings.


Assuntos
Astrócitos/fisiologia , Cálcio/metabolismo , Comunicação Celular , Imagem Molecular/métodos , Neurônios/fisiologia , Norepinefrina/fisiologia , Animais , Astrócitos/metabolismo , Humanos , Neurônios/metabolismo , Norepinefrina/metabolismo
19.
PLoS One ; 13(10): e0203761, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30332429

RESUMO

The concerted activity of neuron-glia networks is responsible for the fascinating dynamics of brain functions. Although these networks have been extensively investigated using a variety of experimental (in vivo and in vitro) and theoretical models, the manner by which neuron-glia networks interact is not fully understood. In particular, how neuromodulators influence network-level signaling between neurons and astrocytes was poorly addressed. In this work, we investigated global effects of the neuromodulator norepinephrine (NE) on neuron-astrocyte network communication in co-cultures of neurons and astrocytes and in isolated astrocyte networks. Electrical stimulation was used to activate the neuron-astrocyte glutamate-mediated pathway. Our results showed dramatic changes in network activity under applied global perturbations. Under neuromodulation, there was a marked rise in calcium signaling in astrocytes, neuronal spontaneous activity was reduced, and the communication between neuron-astrocyte networks was perturbed. Moreover, in the presence of NE, we observed two astrocyte behaviors based on their coupling to neurons. There were also morphological changes in astrocytes upon application of NE, suggesting a physical cause underlies the change in signaling. Our results shed light on the role of NE in controlling sleep-wake cycles.


Assuntos
Neuroglia/fisiologia , Neurônios/efeitos dos fármacos , Norepinefrina/administração & dosagem , Sono/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neuroglia/efeitos dos fármacos , Neurônios/fisiologia , Neurotransmissores/administração & dosagem , Imagem Óptica , Cultura Primária de Células
20.
DNA Repair (Amst) ; 72: 10-17, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30348496

RESUMO

The genome instability syndrome, ataxia-telangiectasia (A-T) is caused by null mutations in the ATM gene, that lead to complete loss or inactivation of the gene's product, the ATM protein kinase. ATM is the primary mobilizer of the cellular response to DNA double-strand breaks (DSBs) - a broad signaling network in which many components are ATM targets. The major clinical feature of A-T is cerebellar atrophy, characterized by relentless loss of Purkinje and granule cells. In Atm-knockout (Atm-KO) mice, complete loss of Atm leads to a very mild neurological phenotype, suggesting that Atm loss is not sufficient to markedly abrogate cerebellar structure and function in this organism. Expression of inactive ("kinase-dead") Atm (AtmKD) in mice leads to embryonic lethality, raising the question of whether conditional expression of AtmKD in the murine nervous system would lead to a more pronounced neurological phenotype than Atm loss. We generated two mouse strains in which AtmKD was conditionally expressed as the sole Atm species: one in the CNS and one specifically in Purkinje cells. Focusing our analysis on Purkinje cells, the dynamics of DSB readouts indicated that DSB repair was delayed longer in the presence of AtmKD compared to Atm loss. However, both strains exhibited normal life span and displayed no gross cerebellar histological abnormalities or significant neurological phenotype. We conclude that the presence of AtmKD is indeed more harmful to DSB repair than Atm loss, but the murine central nervous system can reasonably tolerate the extent of this DSB repair impairment. Greater pressure needs to be exerted on genome stability to obtain a mouse model that recapitulates the severe A-T neurological phenotype.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Ataxia Telangiectasia/genética , Cerebelo/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Fenótipo , Animais , Ataxia Telangiectasia/patologia , Cerebelo/patologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Camundongos , Células de Purkinje/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA