Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biometeorol ; 61(2): 377-390, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27510220

RESUMO

Agricultural drought, a common phenomenon in most parts of the world, is one of the most challenging natural hazards to monitor effectively. Land surface water index (LSWI), calculated as a normalized ratio between near infrared (NIR) and short-wave infrared (SWIR), is sensitive to vegetation and soil water content. This study examined the potential of a LSWI-based, drought-monitoring algorithm to assess summer drought over 113 Oklahoma Mesonet stations comprising various land cover and soil types in Oklahoma. Drought duration in a year was determined by the number of days with LSWI <0 (DNLSWI) during summer months (June-August). Summer rainfall anomalies and LSWI anomalies followed a similar seasonal dynamics and showed strong correlations (r 2 = 0.62-0.73) during drought years (2001, 2006, 2011, and 2012). The DNLSWI tracked the east-west gradient of summer rainfall in Oklahoma. Drought intensity increased with increasing duration of DNLSWI, and the intensity increased rapidly when DNLSWI was more than 48 days. The comparison between LSWI and the US Drought Monitor (USDM) showed a strong linear negative relationship; i.e., higher drought intensity tends to have lower LSWI values and vice versa. However, the agreement between LSWI-based algorithm and USDM indicators varied substantially from 32 % (D 2 class, moderate drought) to 77 % (0 and D 0 class, no drought) for different drought intensity classes and varied from ∼30 % (western Oklahoma) to >80 % (eastern Oklahoma) across regions. Our results illustrated that drought intensity thresholds can be established by counting DNLSWI (in days) and used as a simple complementary tool in several drought applications for semi-arid and semi-humid regions of Oklahoma. However, larger discrepancies between USDM and the LSWI-based algorithm in arid regions of western Oklahoma suggest the requirement of further adjustment in the algorithm for its application in arid regions.


Assuntos
Secas , Agricultura , Algoritmos , Oklahoma , Chuva , Imagens de Satélites , Estações do Ano , Água
2.
J Adv Model Earth Syst ; 13(11): e2021MS002752, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35865275

RESUMO

Soil microbes drive decomposition of soil organic matter (SOM) and regulate soil carbon (C) dynamics. Process-based models have been developed to quantify changes in soil organic carbon (SOC) and carbon dioxide (CO2) fluxes in agricultural ecosystems. However, microbial processes related to SOM decomposition have not been, or are inadequately, represented in these models, limiting predictions of SOC responses to changes in microbial activities. In this study, we developed a microbial-mediated decomposition model based on a widely used biogeochemical model, DeNitrification-DeComposition (DNDC), to simulate C dynamics in agricultural ecosystems. The model simulates organic matter decomposition, soil respiration, and SOC formation by simulating microbial and enzyme dynamics and their controls on decomposition, and considering impacts of climate, soil, crop, and farming management practices (FMPs) on C dynamics. When evaluated against field observations of net ecosystem CO2 exchange (NEE) and SOC change in two winter wheat systems, the model successfully captured both NEE and SOC changes under different FMPs. Inclusion of microbial processes improved the model's performance in simulating peak CO2 fluxes induced by residue return, primarily by capturing priming effects of residue inputs. We also investigated impacts of microbial physiology, SOM, and FMPs on soil C dynamics. Our results demonstrated that residue or manure input drove microbial activity and predominantly regulated the CO2 fluxes, and manure amendment largely regulated long-term SOC change. The microbial physiology had considerable impacts on the microbial activities and soil C dynamics, emphasizing the necessity of considering microbial physiology and activities when assessing soil C dynamics in agricultural ecosystems.

3.
Nat Commun ; 12(1): 6330, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732727

RESUMO

Flash drought is characterized by a period of rapid drought intensification with impacts on agriculture, water resources, ecosystems, and the human environment. Addressing these challenges requires a fundamental understanding of flash drought occurrence. This study identifies global hotspots for flash drought from 1980-2015 via anomalies in evaporative stress and the standardized evaporative stress ratio. Flash drought hotspots exist over Brazil, the Sahel, the Great Rift Valley, and India, with notable local hotspots over the central United States, southwestern Russia, and northeastern China. Six of the fifteen study regions experienced a statistically significant increase in flash drought during 1980-2015. In contrast, three study regions witnessed a significant decline in flash drought frequency. Finally, the results illustrate that multiple pathways of research are needed to further our understanding of the regional drivers of flash drought and the complex interactions between flash drought and socioeconomic impacts.


Assuntos
Agricultura , Ecossistema , Meio Ambiente , Hidrologia , Brasil , China , Mudança Climática , Humanos , Índia , Federação Russa , Estados Unidos , Recursos Hídricos
4.
Sci Total Environ ; 644: 1511-1524, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743864

RESUMO

Winter wheat (Triticum aestivum L.) and tallgrass prairie are common land cover types in the Southern Plains of the United States. During the last century, agricultural expansion into native grasslands was extensive, particularly managed pasture or winter wheat. In this study, we measured carbon dioxide (CO2) and water vapor (H2O) fluxes from winter wheat and tallgrass prairie sites in Central Oklahoma using the eddy covariance in 2015 and 2016. The objective of this study was to contrast CO2 and H2O fluxes between these two ecosystems to provide insights on the impacts of conversion of tallgrass prairie to winter wheat on carbon and water budgets. Daily net ecosystem CO2 exchange (NEE) reached seasonal peaks of -9.4 and -8.8 g C m-2 in 2015 and -6.2 and -7.5 g C m-2 in 2016 at winter wheat and tall grass prairie sites, respectively. Both sites were net sink of carbon during their growing seasons. At the annual scale, the winter wheat site was a net source of carbon (56 ±â€¯13 and 33 ±â€¯9 g C m-2 year-1 in 2015 and 2016, respectively). In contrast, the tallgrass prairie site was a net sink of carbon (-128 ±â€¯69 and -119 ±â€¯53 g C m-2 year-1 in 2015 and 2016, respectively). Daily ET reached seasonal maximums of 6.0 and 5.3 mm day-1 in 2015, and 7.2 and 8.2 mm day-1 in 2016 at the winter wheat and tallgrass prairie sites, respectively. Although ecosystem water use efficiency (EWUE) was higher in winter wheat than in tallgrass prairie at the seasonal scale, summer fallow contributed higher water loss from the wheat site per unit of carbon fixed, resulting into lower EWUE at the annual scale. Results indicate that the differences in magnitudes and patterns of fluxes between the two ecosystems can influence carbon and water budgets.


Assuntos
Dióxido de Carbono/análise , Monitoramento Ambiental , Pradaria , Agricultura , Oklahoma , Estações do Ano , Triticum
5.
Mach Learn ; 95(1): 27-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26549932

RESUMO

Severe weather, including tornadoes, thunderstorms, wind, and hail annually cause significant loss of life and property. We are developing spatiotemporal machine learning techniques that will enable meteorologists to improve the prediction of these events by improving their understanding of the fundamental causes of the phenomena and by building skillful empirical predictive models. In this paper, we present significant enhancements of our Spatiotemporal Relational Probability Trees that enable autonomous discovery of spatiotemporal relationships as well as learning with arbitrary shapes. We focus our evaluation on two real-world case studies using our technique: predicting tornadoes in Oklahoma and predicting aircraft turbulence in the United States. We also discuss how to evaluate success for a machine learning algorithm in the severe weather domain, which will enable new methods such as ours to transfer from research to operations, provide a set of lessons learned for embedded machine learning applications, and discuss how to field our technique.

6.
Ann N Y Acad Sci ; 1328: 10-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25376887

RESUMO

Ruminant livestock provides meat and dairy products that sustain health and livelihood for much of the world's population. Grazing lands that support ruminant livestock provide numerous ecosystem services, including provision of food, water, and genetic resources; climate and water regulation; support of soil formation; nutrient cycling; and cultural services. In the U.S. southern Great Plains, beef production on pastures, rangelands, and hay is a major economic activity. The region's climate is characterized by extremes of heat and cold and extremes of drought and flooding. Grazing lands occupy a large portion of the region's land, significantly affecting carbon, nitrogen, and water budgets. To understand vulnerabilities and enhance resilience of beef production, a multi-institutional Coordinated Agricultural Project (CAP), the "grazing CAP," was established. Integrative research and extension spanning biophysical, socioeconomic, and agricultural disciplines address management effects on productivity and environmental footprints of production systems. Knowledge and tools being developed will allow farmers and ranchers to evaluate risks and increase resilience to dynamic conditions. The knowledge and tools developed will also have relevance to grazing lands in semiarid and subhumid regions of the world.


Assuntos
Conservação dos Recursos Naturais , Carne/provisão & distribuição , Agricultura , Criação de Animais Domésticos , Animais , Bovinos , Proteínas Alimentares/provisão & distribuição , Abastecimento de Alimentos , Humanos , Chuva , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA