Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(1): 24-37, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649876

RESUMO

Viral genomes encode transcriptional regulators that alter the expression of viral and host genes. Despite an emerging role in human diseases, a thorough annotation of human viral transcriptional regulators (vTRs) is currently lacking, limiting our understanding of their molecular features and functions. Here, we provide a comprehensive catalog of 419 vTRs belonging to 20 different virus families. Using this catalog, we characterize shared and unique cellular genes, proteins, and pathways targeted by particular vTRs and discuss the role of vTRs in human disease pathogenesis. Our study provides a unique and valuable resource for the fields of virology, genomics, and human disease genetics.


Assuntos
Transcrição Gênica , Proteínas Virais/metabolismo , Epigênese Genética , Humanos , Modelos Biológicos , Mapas de Interação de Proteínas , Proteínas Virais/química , Proteínas Virais/genética
2.
Nat Immunol ; 22(8): 969-982, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34312548

RESUMO

The transcription factor ThPOK (encoded by the Zbtb7b gene) controls homeostasis and differentiation of mature helper T cells, while opposing their differentiation to CD4+ intraepithelial lymphocytes (IELs) in the intestinal mucosa. Thus CD4 IEL differentiation requires ThPOK transcriptional repression via reactivation of the ThPOK transcriptional silencer element (SilThPOK). In the present study, we describe a new autoregulatory loop whereby ThPOK binds to the SilThPOK to maintain its own long-term expression in CD4 T cells. Disruption of this loop in vivo prevents persistent ThPOK expression, leads to genome-wide changes in chromatin accessibility and derepresses the colonic regulatory T (Treg) cell gene expression signature. This promotes selective differentiation of naive CD4 T cells into GITRloPD-1loCD25lo (Triplelo) Treg cells and conversion to CD4+ IELs in the gut, thereby providing dominant protection from colitis. Hence, the ThPOK autoregulatory loop represents a key mechanism to physiologically control ThPOK expression and T cell differentiation in the gut, with potential therapeutic relevance.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Linfócitos Intraepiteliais/citologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Reguladores/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/imunologia , Colite/imunologia , Colite/prevenção & controle , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Fatores de Transcrição/genética , Transcrição Gênica/genética
3.
Cell ; 161(3): 661-673, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25910213

RESUMO

Gene regulatory networks (GRNs) comprising interactions between transcription factors (TFs) and regulatory loci control development and physiology. Numerous disease-associated mutations have been identified, the vast majority residing in non-coding regions of the genome. As current GRN mapping methods test one TF at a time and require the use of cells harboring the mutation(s) of interest, they are not suitable to identify TFs that bind to wild-type and mutant loci. Here, we use gene-centered yeast one-hybrid (eY1H) assays to interrogate binding of 1,086 human TFs to 246 enhancers, as well as to 109 non-coding disease mutations. We detect both loss and gain of TF interactions with mutant loci that are concordant with target gene expression changes. This work establishes eY1H assays as a powerful addition to the toolkit of mapping human GRNs and for the high-throughput characterization of genomic variants that are rapidly being identified by genome-wide association studies.


Assuntos
Doença/genética , Redes Reguladoras de Genes , Técnicas do Sistema de Duplo-Híbrido , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Mutação , Fatores de Transcrição/metabolismo
4.
Cell ; 161(3): 647-660, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25910212

RESUMO

How disease-associated mutations impair protein activities in the context of biological networks remains mostly undetermined. Although a few renowned alleles are well characterized, functional information is missing for over 100,000 disease-associated variants. Here we functionally profile several thousand missense mutations across a spectrum of Mendelian disorders using various interaction assays. The majority of disease-associated alleles exhibit wild-type chaperone binding profiles, suggesting they preserve protein folding or stability. While common variants from healthy individuals rarely affect interactions, two-thirds of disease-associated alleles perturb protein-protein interactions, with half corresponding to "edgetic" alleles affecting only a subset of interactions while leaving most other interactions unperturbed. With transcription factors, many alleles that leave protein-protein interactions intact affect DNA binding. Different mutations in the same gene leading to different interaction profiles often result in distinct disease phenotypes. Thus disease-associated alleles that perturb distinct protein activities rather than grossly affecting folding and stability are relatively widespread.


Assuntos
Doença/genética , Mutação de Sentido Incorreto , Mapas de Interação de Proteínas , Proteínas/genética , Proteínas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Fases de Leitura Aberta , Dobramento de Proteína , Estabilidade Proteica
5.
Mol Cell ; 82(3): 514-526, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34863368

RESUMO

Transcription factors (TFs) regulate gene expression by binding to DNA sequences and modulating transcriptional activity through their effector domains. Despite the central role of effector domains in TF function, there is a current lack of a comprehensive resource and characterization of effector domains. Here, we provide a catalog of 924 effector domains across 594 human TFs. Using this catalog, we characterized the amino acid composition of effector domains, their conservation across species and across the human population, and their roles in human diseases. Furthermore, we provide a classification system for effector domains that constitutes a valuable resource and a blueprint for future experimental studies of TF effector domain function.


Assuntos
DNA/metabolismo , Domínios Proteicos , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Sítios de Ligação , DNA/genética , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Mutação , Ligação Proteica , Fatores de Transcrição/genética
6.
Trends Genet ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821843

RESUMO

To withstand a hostile cellular environment and replicate, viruses must sense, interpret, and respond to many internal and external cues. Retroviruses and DNA viruses can intercept these cues impinging on host transcription factors via cis-regulatory elements (CREs) in viral genomes, allowing them to sense and coordinate context-specific responses to varied signals. Here, we explore the characteristics of viral CREs, the classes of signals and host transcription factors that regulate them, and how this informs outcomes of viral replication, immune evasion, and latency. We propose that viral CREs constitute central hubs for signal integration from multiple pathways and that sequence variation between viral isolates can rapidly rewire sensing mechanisms, contributing to the variability observed in patient outcomes.

7.
Hum Mol Genet ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37883470

RESUMO

Craniosynostosis, defined by premature fusion of one or multiple cranial sutures, is a common congenital defect affecting more than 1/2000 infants and results in restricted brain expansion. Single gene mutations account for 15-20% of cases, largely as part of a syndrome, but the majority are nonsyndromic with complex underlying genetics. We hypothesized that the two noncoding genomic regions identified by a GWAS for craniosynostosis contain distal regulatory elements for the risk genes BMPER and BMP2. To identify such regulatory elements, we surveyed conserved noncoding sequences from both risk loci for enhancer activity in transgenic Danio rerio. We identified enhancers from both regions that direct expression to skeletal tissues, consistent with the endogenous expression of bmper and bmp2. For each locus, we also found a skeletal enhancer that also contains a sequence variant associated with craniosynostosis risk. We examined the activity of each enhancer during craniofacial development and found that the BMPER-associated enhancer is active in the restricted region of cartilage closely associated with frontal bone initiation. The same enhancer is active in mouse skeletal tissues, demonstrating evolutionarily conserved activity. Using enhanced yeast one-hybrid assays, we identified transcription factors that bind each enhancer and observed differential binding between alleles, implicating multiple signaling pathways. Our findings help unveil the genetic mechanism of the two craniosynostosis risk loci. More broadly, our combined in vivo approach is applicable to many complex genetic diseases to build a link between association studies and specific genetic mechanisms.

8.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836568

RESUMO

The molecular networks involved in the regulation of HIV replication, transcription, and latency remain incompletely defined. To expand our understanding of these networks, we performed an unbiased high-throughput yeast one-hybrid screen, which identified 42 human transcription factors and 85 total protein-DNA interactions with HIV-1 and HIV-2 long terminal repeats. We investigated a subset of these transcription factors for transcriptional activity in cell-based models of infection. KLF2 and KLF3 repressed HIV-1 and HIV-2 transcription in CD4+ T cells, whereas PLAGL1 activated transcription of HIV-2 through direct protein-DNA interactions. Using computational modeling with interacting proteins, we leveraged the results from our screen to identify putative pathways that define intrinsic transcriptional networks. Overall, we used a high-throughput functional screen, computational modeling, and biochemical assays to identify and confirm several candidate transcription factors and biochemical processes that influence HIV-1 and HIV-2 transcription and latency.


Assuntos
Infecções por HIV/metabolismo , HIV-1/metabolismo , HIV-2/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Regulação Viral da Expressão Gênica , Redes Reguladoras de Genes , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , HIV-2/genética , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Virais/genética
9.
PLoS Pathog ; 17(12): e1009982, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962974

RESUMO

HIV-1 establishes a persistent proviral reservoir by integrating into the genome of infected host cells. Current antiretroviral treatments do not target this persistent population of proviruses which include latently infected cells that upon treatment interruption can be reactivated to contribute to HIV-1 rebound. Deep sequencing of persistent HIV proviruses has revealed that greater than 90% of integrated HIV genomes are defective and unable to produce infectious virions. We hypothesized that intragenic elements in the HIV genome support transcription of aberrant HIV-1 RNAs from defective proviruses that lack long terminal repeats (LTRs). Using an intact provirus detection assay, we observed that resting CD4+ T cells and monocyte-derived macrophages (MDMs) are biased towards generating defective HIV-1 proviruses. Multiplex reverse transcription droplet digital PCR identified env and nef transcripts which lacked 5' untranslated regions (UTR) in acutely infected CD4+ T cells and MDMs indicating transcripts are generated that do not utilize the promoter within the LTR. 5'UTR-deficient env transcripts were also identified in a cohort of people living with HIV (PLWH) on ART, suggesting that these aberrant RNAs are produced in vivo. Using 5' rapid amplification of cDNA ends (RACE), we mapped the start site of these transcripts within the Env gene. This region bound several cellular transcription factors and functioned as a transcriptional regulatory element that could support transcription and translation of downstream HIV-1 RNAs. These studies provide mechanistic insights into how defective HIV-1 proviruses are persistently expressed to potentially drive inflammation in PLWH.


Assuntos
Genoma Viral/genética , Infecções por HIV/virologia , HIV-1/genética , Provírus/genética , RNA Viral/genética , Humanos , Macrófagos/virologia , Reação em Cadeia da Polimerase , Transcrição Gênica , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
10.
Nucleic Acids Res ; 49(8): 4308-4324, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33849068

RESUMO

Variable Number Tandem Repeats (VNTRs) are tandem repeat (TR) loci that vary in copy number across a population. Using our program, VNTRseek, we analyzed human whole genome sequencing datasets from 2770 individuals in order to detect minisatellite VNTRs, i.e., those with pattern sizes ≥7 bp. We detected 35 638 VNTR loci and classified 5676 as commonly polymorphic (i.e. with non-reference alleles occurring in >5% of the population). Commonly polymorphic VNTR loci were found to be enriched in genomic regions with regulatory function, i.e. transcription start sites and enhancers. Investigation of the commonly polymorphic VNTRs in the context of population ancestry revealed that 1096 loci contained population-specific alleles and that those could be used to classify individuals into super-populations with near-perfect accuracy. Search for quantitative trait loci (eQTLs), among the VNTRs proximal to genes, indicated that in 187 genes expression differences correlated with VNTR genotype. We validated our predictions in several ways, including experimentally, through the identification of predicted alleles in long reads, and by comparisons showing consistency between sequencing platforms. This study is the most comprehensive analysis of minisatellite VNTRs in the human population to date.


Assuntos
Regulação da Expressão Gênica , Genoma Humano , Repetições Minissatélites , Polimorfismo Genético , Alelos , Conjuntos de Dados como Assunto , Elementos Facilitadores Genéticos , Humanos , População/genética , Sítio de Iniciação de Transcrição , Sequenciamento Completo do Genoma
11.
Genome Res ; 29(9): 1533-1544, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31481462

RESUMO

Identifying transcription factor (TF) binding to noncoding variants, uncharacterized DNA motifs, and repetitive genomic elements has been technically and computationally challenging. Current experimental methods, such as chromatin immunoprecipitation, generally test one TF at a time, and computational motif algorithms often lead to false-positive and -negative predictions. To address these limitations, we developed an experimental approach based on enhanced yeast one-hybrid assays. The first variation of this approach interrogates the binding of >1000 human TFs to repetitive DNA elements, while the second evaluates TF binding to single nucleotide variants, short insertions and deletions (indels), and novel DNA motifs. Using this approach, we detected the binding of 75 TFs, including several nuclear hormone receptors and ETS factors, to the highly repetitive Alu elements. Further, we identified cancer-associated changes in TF binding, including gain of interactions involving ETS TFs and loss of interactions involving KLF TFs to different mutations in the TERT promoter, and gain of a MYB interaction with an 18-bp indel in the TAL1 superenhancer. Additionally, we identified TFs that bind to three uncharacterized DNA motifs identified in DNase footprinting assays. We anticipate that these enhanced yeast one-hybrid approaches will expand our capabilities to study genetic variation and undercharacterized genomic regions.


Assuntos
Biologia Computacional/métodos , DNA/química , DNA/metabolismo , Neoplasias/genética , Fatores de Transcrição/metabolismo , Algoritmos , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Mutação INDEL , Células K562 , Neoplasias/metabolismo , Motivos de Nucleotídeos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico , Fatores de Transcrição/química , Técnicas do Sistema de Duplo-Híbrido
12.
Nucleic Acids Res ; 48(21): 12055-12073, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179750

RESUMO

Proper cytokine gene expression is essential in development, homeostasis and immune responses. Studies on the transcriptional control of cytokine genes have mostly focused on highly researched transcription factors (TFs) and cytokines, resulting in an incomplete portrait of cytokine gene regulation. Here, we used enhanced yeast one-hybrid (eY1H) assays to derive a comprehensive network comprising 1380 interactions between 265 TFs and 108 cytokine gene promoters. Our eY1H-derived network greatly expands the known repertoire of TF-cytokine gene interactions and the set of TFs known to regulate cytokine genes. We found an enrichment of nuclear receptors and confirmed their role in cytokine regulation in primary macrophages. Additionally, we used the eY1H-derived network as a framework to identify pairs of TFs that can be targeted with commercially-available drugs to synergistically modulate cytokine production. Finally, we integrated the eY1H data with single cell RNA-seq and phenotypic datasets to identify novel TF-cytokine regulatory axes in immune diseases and immune cell lineage development. Overall, the eY1H data provides a rich resource to study cytokine regulation in a variety of physiological and disease contexts.


Assuntos
Linhagem da Célula/imunologia , Citocinas/genética , Redes Reguladoras de Genes/imunologia , Linfócitos/imunologia , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Linhagem da Célula/genética , Citocinas/classificação , Citocinas/imunologia , Conjuntos de Dados como Assunto , Células Dendríticas/citologia , Células Dendríticas/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfócitos/classificação , Linfócitos/citologia , Macrófagos/citologia , Macrófagos/imunologia , Anotação de Sequência Molecular , Monócitos/citologia , Monócitos/imunologia , Cultura Primária de Células , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/imunologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única , Células THP-1 , Fatores de Transcrição/classificação , Fatores de Transcrição/imunologia , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
13.
Nucleic Acids Res ; 46(18): 9321-9337, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30184180

RESUMO

Cytokines are cell-to-cell signaling proteins that play a central role in immune development, pathogen responses, and diseases. Cytokines are highly regulated at the transcriptional level by combinations of transcription factors (TFs) that recruit cofactors and the transcriptional machinery. Here, we mined through three decades of studies to generate a comprehensive database, CytReg, reporting 843 and 647 interactions between TFs and cytokine genes, in human and mouse respectively. By integrating CytReg with other functional datasets, we determined general principles governing the transcriptional regulation of cytokine genes. In particular, we show a correlation between TF connectivity and immune phenotype and disease, we discuss the balance between tissue-specific and pathogen-activated TFs regulating each cytokine gene, and cooperativity and plasticity in cytokine regulation. We also illustrate the use of our database as a blueprint to predict TF-disease associations and identify potential TF-cytokine regulatory axes in autoimmune diseases. Finally, we discuss research biases in cytokine regulation studies, and use CytReg to predict novel interactions based on co-expression and motif analyses which we further validated experimentally. Overall, this resource provides a framework for the rational design of future cytokine gene regulation studies.


Assuntos
Citocinas/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Animais , Perfilação da Expressão Gênica , Humanos , Camundongos , Mapas de Interação de Proteínas/genética
14.
Pediatr Radiol ; 49(7): 862-868, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31154502

RESUMO

BACKGROUND: The Kwak Thyroid Imaging Reporting and Data System (Kwak-TI-RADS) guideline (2011) and American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) guideline (2017) were developed as ultrasound (US) risk stratification tools for detecting thyroid malignancy in adults. OBJECTIVE: The purpose of this study was to investigate the inter-rater reliability and diagnostic performance of the ACR TI-RADS guideline in the pediatric population and compare it to the Kwak guideline. MATERIALS AND METHODS: This retrospective study comprised 75 children who underwent thyroid US at a tertiary-level pediatric hospital. Three pediatric radiologists and one pediatric radiology fellow graded the US findings using the Kwak-TI-RADS and ACR TI-RADS guidelines. We assessed reliability of radiologists' ratings using percentage inter-rater agreement, and intra-class correlation coefficients (ICC2,1). We assessed area-under-the-receiver-operating-characteristic curve (AUROCC) to compare the discriminative diagnostic ability of the Kwak-TI-RADS and ACR TI-RADS scoring systems against histopathology/cytology, or stability on US over a 2-year follow-up period for cases without tissue diagnosis. RESULTS: The inter-rater agreement was significantly better for the ACR TI-RADS level compared to the Kwak-TI-RADS level (P<0.001) using the percentage pairwise agreement. The ROC curves for assessing the diagnostic performance of the two methods showed no significant difference between the methods. The AUROCCs for the Kwak-TI-RADS and ACR TI-RADS levels were 0.74 (95% confidence interval [CI] 0.67-0.82) and 0.72 (95% CI 0.61-0.82), respectively. CONCLUSION: Both the Kwak-TI-RADS and ACR TI-RADS guidelines provide moderate malignancy risk stratification for thyroid nodules in the pediatric population, with better inter-rater agreement for the ACR TI-RADS guideline. Further work to adjust the recommendations for pediatric patients is necessary.


Assuntos
Nódulo da Glândula Tireoide/diagnóstico por imagem , Ultrassonografia/métodos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Ontário , Reprodutibilidade dos Testes , Estudos Retrospectivos
15.
Mol Syst Biol ; 12(10): 884, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27777270

RESUMO

Transcription factors (TFs) play a central role in controlling spatiotemporal gene expression and the response to environmental cues. A comprehensive understanding of gene regulation requires integrating physical protein-DNA interactions (PDIs) with TF regulatory activity, expression patterns, and phenotypic data. Although great progress has been made in mapping PDIs using chromatin immunoprecipitation, these studies have only characterized ~10% of TFs in any metazoan species. The nematode C. elegans has been widely used to study gene regulation due to its compact genome with short regulatory sequences. Here, we delineated the largest gene-centered metazoan PDI network to date by examining interactions between 90% of C. elegans TFs and 15% of gene promoters. We used this network as a backbone to predict TF binding sites for 77 TFs, two-thirds of which are novel, as well as integrate gene expression, protein-protein interaction, and phenotypic data to predict regulatory and biological functions for multiple genes and TFs.


Assuntos
Caenorhabditis elegans/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Ligação Proteica , Mapas de Interação de Proteínas , RNA Mensageiro/química , RNA de Protozoário/metabolismo , Fatores de Transcrição/química
16.
Can Assoc Radiol J ; 68(1): 90-95, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27887934

RESUMO

In 1981, Currarino et al described a triad of findings that consist of partial sacral dysgenesis, presacral mass (anterior meningocele, enteric cyst, or presacral teratoma) and anorectal malformation. Currarino syndrome exhibits variable expressivity and the clinical presentation tends to vary with the age of the subject such as spinal anomaly detected in the fetus, imperforate anus in the newborn, and intractable constipation or neurologic symptoms in the infant and older child. At any age, meningitis can be the presenting symptom and imaging is required for proper investigation. Meningitis, sepsis, urinary tract infections, and, rarely, malignant transformation of a teratoma are serious potential complications. This pictorial review describes the imaging findings, clinical history, surgical interventions, and genetic background in 5 children with this syndrome who presented in our hospital in the interval of 1 year.


Assuntos
Canal Anal/anormalidades , Diagnóstico por Imagem/métodos , Anormalidades do Sistema Digestório/diagnóstico por imagem , Diagnóstico Pré-Natal/métodos , Reto/anormalidades , Sacro/anormalidades , Siringomielia/diagnóstico por imagem , Adolescente , Canal Anal/diagnóstico por imagem , Pré-Escolar , Feminino , Doenças Fetais/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , Gravidez , Reto/diagnóstico por imagem , Sacro/diagnóstico por imagem , Síndrome
17.
Genome Res ; 23(6): 954-65, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23539137

RESUMO

Gene families expand by gene duplication, and resulting paralogs diverge through mutation. Functional diversification can include neofunctionalization as well as subfunctionalization of ancestral functions. In addition, redundancy in which multiple genes fulfill overlapping functions is often maintained. Here, we use the family of 40 Caenorhabditis elegans insulins to gain insight into the balance between specificity and redundancy. The insulin/insulin-like growth factor (IIS) pathway comprises a single receptor, DAF-2. To date, no single insulin-like peptide recapitulates all DAF-2-associated phenotypes, likely due to redundancy between insulin-like genes. To provide a first-level annotation of potential patterns of redundancy, we comprehensively delineate the spatiotemporal and conditional expression of all 40 insulins in living animals. We observe extensive dynamics in expression that can explain the lack of simple patterns of pairwise redundancy. We propose a model in which gene families evolve to attain differential alliances in different tissues and in response to a range of environmental stresses.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Insulina/genética , Insulina/metabolismo , Transdução de Sinais , Animais , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Interferência de RNA
18.
Nat Methods ; 10(12): 1169-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24296474

RESUMO

Biological networks can be used to functionally annotate genes on the basis of interaction-profile similarities. Metrics known as association indices can be used to quantify interaction-profile similarity. We provide an overview of commonly used association indices, including the Jaccard index and the Pearson correlation coefficient, and compare their performance in different types of analyses of biological networks. We introduce the Guide for Association Index for Networks (GAIN), a web tool for calculating and comparing interaction-profile similarities and defining modules of genes with similar profiles.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Biologia de Sistemas/métodos , Algoritmos , Animais , Área Sob a Curva , Caenorhabditis elegans , Análise por Conglomerados , Perfilação da Expressão Gênica , Genótipo , Humanos , Internet , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Regiões Promotoras Genéticas
19.
Nucleic Acids Res ; 42(1): 153-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24068555

RESUMO

Gene expression is controlled through the binding of transcription factors (TFs) to regulatory genomic regions. First introns are longer than other introns in multiple eukaryotic species and are under selective constraint. Here we explore the importance of first introns in TF binding in the nematode Caenorhabditis elegans by combining computational predictions and experimentally derived TF-DNA interaction data. We found that first introns of C. elegans genes, particularly those for families enriched in long first introns, are more conserved in length, have more conserved predicted TF interactions and are bound by more TFs than other introns. We detected a significant positive correlation between first intron size and the number of TF interactions obtained from chromatin immunoprecipitation assays or determined by yeast one-hybrid assays. TFs that bind first introns are largely different from those binding promoters, suggesting that the different interactions are complementary rather than redundant. By combining first intron and promoter interactions, we found that genes that share a large fraction of TF interactions are more likely to be co-expressed than when only TF interactions with promoters are considered. Altogether, our data suggest that C. elegans gene regulation may be additive through the combined effects of multiple regulatory regions.


Assuntos
Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Íntrons , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Animais , Redes Reguladoras de Genes , Família Multigênica
20.
Eur J Immunol ; 43(12): 3324-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23963575

RESUMO

Neutrophils are essential players in acute inflammatory responses. Upon stimulation, neutrophils activate NADPH oxidase, generating an array of reactive oxygen species (ROS). Interleukin-1 beta (IL-1ß) is a major proinflammatory cytokine synthesized as a precursor that has to be proteolytically processed to become biologically active. The role of ROS in IL-1ß processing is still controversial and has not been previously studied in neutrophils. We report here that IL-1ß processing in human neutrophils is dependent on caspase-1 and on the serine proteases elastase and/or proteinase 3. NADPH oxidase deficient neutrophils activated caspase-1 and did not exhibit differences in NALP3 expression, indicating that ROS are neither required for inflammasome activation nor for its priming, as has been reported for macrophages. Strikingly, ROS exerted opposite effects on the processing and secretion of IL-1ß; whereas ROS negatively controlled caspase-1 activity, as reported in mononuclear phagocytes, ROS were found to be necessary for the exportation of mature IL-1ß out of the cell, a role never previously described. The complex ROS-mediated regulation of neutrophil IL-1ß secretion might constitute a physiological mechanism to control IL-1ß-dependent inflammatory processes where neutrophils play a crucial role.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , NADPH Oxidases/imunologia , Espécies Reativas de Oxigênio/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Caspase 1/genética , Caspase 1/imunologia , Caspase 1/metabolismo , Linhagem Celular , Feminino , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Mieloblastina/genética , Mieloblastina/imunologia , Mieloblastina/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA